Shaffer Jamie L, De Sisternes Luis, Rajesh Anand E, Blazes Marian S, Kihara Yuka, Lee Cecilia S, Lewis Warren H, Goldberg Roger A, Manivannan Niranchana, Lee Aaron Y
Department of Ophthalmology, UW Medicine, Seattle, Washington.
The Roger and Angie Karalis Johnson Retina Center, Seattle, Washington.
Ophthalmol Sci. 2024 Aug 23;5(1):100605. doi: 10.1016/j.xops.2024.100605. eCollection 2025 Jan-Feb.
Although structural OCT is traditionally used to differentiate the vascular plexus layers in OCT angiography (OCTA), the vascular plexuses do not always obey the retinal laminations. We sought to segment the superficial, deep, and avascular plexuses from OCTA images using deep learning without structural OCT image input or segmentation boundaries.
Cross-sectional study.
The study included 235 OCTA cubes from 33 patients for training and testing of the model.
From each OCTA cube, 3 weakly labeled images representing the superficial, deep, and avascular plexuses were obtained for a total of 705 starting images. Images were augmented with standard intensity and geometric transforms, and regions from adjacent plexuses were programmatically combined to create synthetic 2-class images for each OCTA cube. Images were partitioned on a per patient basis into training, validation, and reserved test groups to train and evaluate a U-Net based machine learning model. To investigate the generalization of the model, we applied the model to multiclass thin slabs from OCTA volumes and qualitatively observed the resulting b-scans.
Plexus segmentation performance was assessed quantitatively using Dice scores on a held-out test set.
After training on single-class plexus images, our model achieved good results (Dice scores > 0.82) and was further improved when using the synthetic 2-class images (Dice >0.95). Although not trained on more complex multiclass slabs, the model performed plexus labeling on slab data, which indicates that the use of only OCTA data shows promise for segmenting the superficial, deep, and avascular plexuses without requiring OCT layer segmentations, and the use of synthetic 2-class images makes a significant performance improvement.
This study presents the use of OCTA data alone to segment the superficial, deep, and avascular plexuses of the retina, confirming that use of structural OCT layer segmentations as boundaries is not required.
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
尽管传统上使用结构光学相干断层扫描(OCT)来区分光学相干断层扫描血管造影(OCTA)中的血管丛层,但血管丛并不总是遵循视网膜分层。我们试图使用深度学习从OCTA图像中分割出浅表、深层和无血管丛,而无需结构OCT图像输入或分割边界。
横断面研究。
该研究包括来自33名患者的235个OCTA立方体,用于模型的训练和测试。
从每个OCTA立方体中获得3个弱标记图像,分别代表浅表、深层和无血管丛,总共705个起始图像。通过标准强度和几何变换对图像进行增强,并以编程方式组合相邻丛的区域,为每个OCTA立方体创建合成的2类图像。图像按患者逐个划分为训练、验证和保留测试组,以训练和评估基于U-Net的机器学习模型。为了研究模型的泛化能力,我们将模型应用于OCTA体积的多类薄板,并定性观察所得的B扫描。
使用Dice分数在保留测试集上定量评估丛分割性能。
在单类丛图像上训练后,我们的模型取得了良好的结果(Dice分数>0.82),在使用合成2类图像时进一步提高(Dice>0.95)。尽管没有在更复杂的多类薄板上进行训练,但该模型对薄板数据进行了丛标记,这表明仅使用OCTA数据在分割浅表、深层和无血管丛方面显示出前景,而无需OCT层分割,并且使用合成2类图像可显著提高性能。
本研究提出仅使用OCTA数据来分割视网膜的浅表,深层和无血管丛,证实无需使用结构OCT层分割作为边界。
在本文末尾的脚注和披露中可能会找到专有或商业披露信息。