Suppr超能文献

NRG肿瘤学试验中脑癌和头颈部癌的放射治疗计划质量保证:一种基于人工智能增强知识的方法。

Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach.

作者信息

Wang Du, Geng Huaizhi, Gondi Vinai, Lee Nancy Y, Tsien Christina I, Xia Ping, Chenevert Thomas L, Michalski Jeff M, Gilbert Mark R, Le Quynh-Thu, Omuro Antonio M, Men Kuo, Aldape Kenneth D, Cao Yue, Srinivasan Ashok, Barani Igor J, Sachdev Sean, Huang Jiayi, Choi Serah, Shi Wenyin, Battiste James D, Wardak Zabi, Chan Michael D, Mehta Minesh P, Xiao Ying

机构信息

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Northwestern Medicine Cancer Center Warrenville, Warrenville, IL 60555, USA.

出版信息

Cancers (Basel). 2024 May 25;16(11):2007. doi: 10.3390/cancers16112007.

Abstract

The quality of radiation therapy (RT) treatment plans directly affects the outcomes of clinical trials. KBP solutions have been utilized in RT plan quality assurance (QA). In this study, we evaluated the quality of RT plans for brain and head/neck cancers enrolled in multi-institutional clinical trials utilizing a KBP approach. The evaluation was conducted on 203 glioblastoma (GBM) patients enrolled in NRG-BN001 and 70 nasopharyngeal carcinoma (NPC) patients enrolled in NRG-HN001. For each trial, fifty high-quality photon plans were utilized to build a KBP photon model. A KBP proton model was generated using intensity-modulated proton therapy (IMPT) plans generated on 50 patients originally treated with photon RT. These models were then applied to generate KBP plans for the remaining patients, which were compared against the submitted plans for quality evaluation, including in terms of protocol compliance, target coverage, and organ-at-risk (OAR) doses. RT plans generated by the KBP models were demonstrated to have superior quality compared to the submitted plans. KBP IMPT plans can decrease the variation of proton plan quality and could possibly be used as a tool for developing improved plans in the future. Additionally, the KBP tool proved to be an effective instrument for RT plan QA in multi-center clinical trials.

摘要

放射治疗(RT)治疗计划的质量直接影响临床试验的结果。基于知识的计划(KBP)解决方案已被用于RT计划质量保证(QA)。在本研究中,我们利用KBP方法评估了参与多机构临床试验的脑癌和头颈癌RT计划的质量。评估针对203例入组NRG-BN001的胶质母细胞瘤(GBM)患者和70例入组NRG-HN001的鼻咽癌(NPC)患者进行。对于每个试验,使用五十个高质量的光子计划来构建一个KBP光子模型。使用最初接受光子RT治疗的50例患者生成的调强质子治疗(IMPT)计划生成一个KBP质子模型。然后将这些模型应用于为其余患者生成KBP计划,并将其与提交的计划进行质量评估比较,包括方案依从性、靶区覆盖和危及器官(OAR)剂量方面。结果表明,与提交的计划相比,KBP模型生成的RT计划质量更优。KBP IMPT计划可以减少质子计划质量的差异,并有可能在未来用作制定改进计划的工具。此外,KBP工具被证明是多中心临床试验中RT计划QA的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/653d/11171017/8361c14eeb08/cancers-16-02007-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验