Hulse Samuel V, Bruns Emily L
University of Maryland College Park, College Park, MD, USA.
Biol Lett. 2024 Dec;20(12):20240296. doi: 10.1098/rsbl.2024.0296. Epub 2024 Dec 4.
Evolutionary models of quantitative traits often assume trade-offs between beneficial and detrimental traits, requiring modellers to specify a function linking trait values. The choice of trade-off function can be consequential; functions that assume diminishing returns (accelerating costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to genetic polymorphisms. Despite their importance, our current theory has little to say on which trade-off functions are the most biologically plausible. To address this gap, we explored how the genetic determination of quantitative traits can lead to different trade-off functions, using resistance to infectious diseases as an example trait. We developed a model where alleles at separate loci pleiotropically increase resistance while decreasing fecundity. We then used this model to generate genotype landscapes and investigate how epistasis effects the trade-off function. Regardless of the strength of epistasis, our model consistently led to accelerating costs. We then incorporated our genotype model into an eco-evolutionary model of disease resistance. Unlike other models with accelerating costs, our approach often led to genetic polymorphisms. Our results suggest that accelerating costs are a strong null model for evolutionary trade-offs and that the eco-evolutionary conditions required for polymorphism may be more nuanced than previously thought.
数量性状的进化模型通常假定有益性状和有害性状之间存在权衡,这就要求建模者指定一个将性状值联系起来的函数。权衡函数的选择可能会产生重要影响;假定收益递减(成本加速)的函数通常会导致单一的平衡基因型,而成本减速的函数往往会导致遗传多态性。尽管它们很重要,但我们目前的理论对于哪些权衡函数在生物学上最合理却几乎没有涉及。为了填补这一空白,我们以对传染病的抗性为例,探讨了数量性状的遗传决定如何导致不同的权衡函数。我们构建了一个模型,其中位于不同位点的等位基因通过多效性增加抗性,同时降低繁殖力。然后我们使用这个模型生成基因型景观,并研究上位性如何影响权衡函数。无论上位性的强度如何,我们的模型始终导致成本加速。接着,我们将基因型模型纳入一个抗病性的生态进化模型。与其他具有加速成本的模型不同,我们的方法往往会导致遗传多态性。我们的结果表明,加速成本是进化权衡的一个强大零模型,并且多态性所需的生态进化条件可能比以前认为的更加微妙。