Suppr超能文献

基于Transformer的自我报告语音记录的迁移学习用于帕金森病诊断。

Transformer-based transfer learning on self-reported voice recordings for Parkinson's disease diagnosis.

作者信息

Tougui Ilias, Zakroum Mehdi, Karrakchou Ouassim, Ghogho Mounir

机构信息

College of Engineering and Architecture - TICLab, International University of Rabat, Rabat, Morocco.

Faculty of Engineering, University of Leeds, Leeds, UK.

出版信息

Sci Rep. 2024 Dec 3;14(1):30131. doi: 10.1038/s41598-024-81824-x.

Abstract

Deep learning (DL) techniques are becoming more popular for diagnosing Parkinson's disease (PD) because they offer non-invasive and easily accessible tools. By using advanced data analysis, these methods improve early detection and diagnosis, which is crucial for managing the disease effectively. This study explores end-to-end DL architectures, such as convolutional neural networks and transformers, for diagnosing PD using self-reported voice data collected via smartphones in everyday settings. Transfer learning was applied by starting with models pre-trained on large datasets from the image and the audio domains and then fine-tuning them on the mPower voice data. The Transformer model pre-trained on the voice data performed the best, achieving an average AUC of [Formula: see text] and an average AUPRC of [Formula: see text], outperforming models trained from scratch. To the best of our knowledge, this is the first use of a Transformer model for audio data in PD diagnosis, using this dataset. We achieved better results than previous studies, whether they focused solely on the voice or incorporated multiple modalities, by relying only on the voice as a biomarker. These results show that using self-reported voice data with state-of-the-art DL architectures can significantly improve PD prediction and diagnosis, potentially leading to better patient outcomes.

摘要

深度学习(DL)技术在帕金森病(PD)诊断中越来越受欢迎,因为它们提供了非侵入性且易于获取的工具。通过使用先进的数据分析,这些方法改善了早期检测和诊断,这对于有效管理该疾病至关重要。本研究探索了端到端的DL架构,如卷积神经网络和Transformer,用于使用在日常环境中通过智能手机收集的自我报告语音数据来诊断PD。通过从在图像和音频领域的大型数据集上预训练的模型开始,然后在mPower语音数据上对其进行微调来应用迁移学习。在语音数据上预训练的Transformer模型表现最佳,平均AUC为[公式:见正文],平均AUPRC为[公式:见正文],优于从头开始训练的模型。据我们所知,这是首次在PD诊断中使用Transformer模型处理音频数据,并使用此数据集。我们取得了比以前的研究更好的结果,无论它们是仅专注于语音还是纳入了多种模式,我们仅依靠语音作为生物标志物。这些结果表明,将自我报告的语音数据与最先进的DL架构相结合可以显著改善PD预测和诊断,可能带来更好的患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ad/11614913/90e3c12c954f/41598_2024_81824_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验