Ma Yao, Xiao Taishi, Zhu Kerun, Zhang Wei, Yin Ziqing, Dong Angang, Sun Zhengzong, Zhao Dongyuan, Li Wei
Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China.
School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200433, China.
Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202416629. doi: 10.1002/anie.202416629. Epub 2024 Dec 17.
Electrocatalytic CO reduction reaction (eCORR) has captivated widespread attentions, yet achieving the requisite efficiency, selectivity and stability for industrial applications poses a persistent challenge. Here, we report the synthesis of 2D mesoporous Ni single atom catalysts in N-doped carbon framework via a bottom-up interfacial assembly strategy. The 2D mesoporous Ni-N-C catalyst showcases an ultrathin thickness (6.7 nm) with well-distributed 5 to 40 nm-width mesopores in plane and a high surface area. As a result, the Ni single atom sites with a high density (6.0 wt %) are almost completely exposed and can be accessible, and the mass transfer can be greatly promoted even at high current densities. Thus, a high current density of 446 mA cm with >95 % CO selectivity in a flow cell can be obtained. Concurrently, the catalyst demonstrates an impressive stability, maintaining a 50-hours continuous electrolysis in the membrane electrode assembly test and achieving an energy efficiency of 42 %. Finite element analysis reveals that the 2D mesoporous design enhances CO diffusion, ensuring efficient adsorption and swift CO desorption at high current densities. Our study paves a way for the fabrication of 2D mesoporous single atom catalysts with nearly 100 % accessibility and expedited mass transport.
电催化CO还原反应(eCORR)已引起广泛关注,然而,要实现工业应用所需的效率、选择性和稳定性,仍然是一个长期存在的挑战。在此,我们报告了通过自下而上的界面组装策略,在N掺杂碳骨架中合成二维介孔Ni单原子催化剂。二维介孔Ni-N-C催化剂呈现出超薄的厚度(约6.7 nm),平面内有分布均匀、宽度为5至40 nm的介孔,且具有高比表面积。因此,高密度(约6.0 wt %)的Ni单原子位点几乎完全暴露且可被利用,即使在高电流密度下,传质也能得到极大促进。因此,在流动池中可获得446 mA cm的高电流密度,CO选择性>95 %。同时,该催化剂表现出令人印象深刻的稳定性,在膜电极组件测试中保持50小时连续电解,能量效率达到42 %。有限元分析表明,二维介孔设计增强了CO扩散,确保了在高电流密度下的高效吸附和快速CO解吸。我们的研究为制备具有近100 %可及性和加速传质的二维介孔单原子催化剂铺平了道路。