Suppr超能文献

突破各向异性磁共振图像零样本自监督超分辨率的极限

Pushing the limits of zero-shot self-supervised super-resolution of anisotropic MR images.

作者信息

Remedios Samuel W, Wei Shuwen, Dewey Blake E, Carass Aaron, Pham Dzung L, Prince Jerry L

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, MD 21286, USA.

Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3007304. Epub 2024 Apr 2.

Abstract

Magnetic resonance images are often acquired as several 2D slices and stacked into a 3D volume, yielding a lower through-plane resolution than in-plane resolution. Many super-resolution (SR) methods have been proposed to address this, including those that use the inherent high-resolution (HR) in-plane signal as HR data to train deep neural networks. Techniques with this approach are generally both self-supervised and internally trained, so no external training data is required. However, in such a training paradigm limited data are present for training machine learning models and the frequency content of the in-plane data may be insufficient to capture the true HR image. In particular, the recovery of high frequency information is usually lacking. In this work, we show this shortcoming with Fourier analysis; we subsequently propose and compare several approaches to address the recovery of high frequency information. We test a particular internally trained self-supervised method named SMORE on ten subjects at three common clinical resolutions with three types of modification: frequency-type losses (Fourier and wavelet), feature-type losses, and low-resolution re-gridding strategies for estimating the residual. We find a particular combination to balance between signal recovery in both spatial and frequency domains qualitatively and quantitatively, yet none of the modifications alone or in tandem yield a vastly superior result. We postulate that there may either be limits on internally trained techniques that such modifications cannot address, or limits on modeling SR as finding a map from low-resolution to HR, or both.

摘要

磁共振图像通常以多个二维切片的形式采集并堆叠成三维体积,从而导致层面分辨率低于平面分辨率。已经提出了许多超分辨率(SR)方法来解决这个问题,包括那些使用固有的高分辨率(HR)平面信号作为HR数据来训练深度神经网络的方法。采用这种方法的技术通常既是自监督的,也是内部训练的,因此不需要外部训练数据。然而,在这样的训练范式中,用于训练机器学习模型的数据有限,并且平面数据的频率内容可能不足以捕捉真实的HR图像。特别是,高频信息的恢复通常不足。在这项工作中,我们通过傅里叶分析展示了这个缺点;随后,我们提出并比较了几种解决高频信息恢复的方法。我们在十个受试者身上,以三种常见的临床分辨率,对一种名为SMORE的特定内部训练自监督方法进行了测试,采用了三种类型的修改:频率型损失(傅里叶和小波)、特征型损失以及用于估计残差的低分辨率重新网格化策略。我们发现了一种特定的组合,在空间和频率域的信号恢复之间进行定性和定量的平衡,但单独或串联的任何一种修改都没有产生非常优越的结果。我们推测,可能存在内部训练技术无法解决的限制,或者将SR建模为从低分辨率到HR的映射存在限制,或者两者都有。

相似文献

10
A Deep Learning Based Anti-aliasing Self Super-resolution Algorithm for MRI.一种基于深度学习的磁共振成像抗混叠自超分辨率算法
Med Image Comput Comput Assist Interv. 2018 Sep;11070:100-108. doi: 10.1007/978-3-030-00928-1_12. Epub 2018 Sep 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验