Remedios Samuel W, Han Shuo, Xue Yuan, Carass Aaron, Tran Trac D, Pham Dzung L, Prince Jerry L
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Med Image Comput Comput Assist Interv. 2022 Sep;13436:613-622. doi: 10.1007/978-3-031-16446-0_58. Epub 2022 Sep 17.
In 2D multi-slice magnetic resonance (MR) acquisition, the through-plane signals are typically of lower resolution than the in-plane signals. While contemporary super-resolution (SR) methods aim to recover the underlying high-resolution volume, the estimated high-frequency information is implicit via end-to-end data-driven training rather than being explicitly stated and sought. To address this, we reframe the SR problem statement in terms of perfect reconstruction filter banks, enabling us to identify and directly estimate the missing information. In this work, we propose a two-stage approach to approximate the completion of a perfect reconstruction filter bank corresponding to the anisotropic acquisition of a particular scan. In stage 1, we estimate the missing filters using gradient descent and in stage 2, we use deep networks to learn the mapping from coarse coefficients to detail coefficients. In addition, the proposed formulation does not rely on external training data, circumventing the need for domain shift correction. Under our approach, SR performance is improved particularly in "slice gap" scenarios, likely due to the constrained solution space imposed by the framework.
在二维多切片磁共振(MR)采集中,层面内信号的分辨率通常低于层面内信号。虽然当代超分辨率(SR)方法旨在恢复潜在的高分辨率体积,但估计的高频信息是通过端到端数据驱动训练隐含的,而不是明确陈述和寻求的。为了解决这个问题,我们根据完美重建滤波器组重新构建SR问题陈述,使我们能够识别并直接估计缺失的信息。在这项工作中,我们提出了一种两阶段方法来近似完成与特定扫描的各向异性采集相对应的完美重建滤波器组。在第一阶段,我们使用梯度下降估计缺失的滤波器,在第二阶段,我们使用深度网络学习从粗系数到细节系数的映射。此外,所提出的公式不依赖于外部训练数据,从而避免了域移位校正的需要。在我们的方法下,特别是在“切片间隙”场景中,SR性能得到了改善,这可能是由于框架施加的受限解空间。