Suppr超能文献

SMORE:一种基于深度学习的 MRI 自监督去混叠和超分辨率算法。

SMORE: A Self-Supervised Anti-Aliasing and Super-Resolution Algorithm for MRI Using Deep Learning.

出版信息

IEEE Trans Med Imaging. 2021 Mar;40(3):805-817. doi: 10.1109/TMI.2020.3037187. Epub 2021 Mar 2.

Abstract

High resolution magnetic resonance (MR) images are desired in many clinical and research applications. Acquiring such images with high signal-to-noise (SNR), however, can require a long scan duration, which is difficult for patient comfort, is more costly, and makes the images susceptible to motion artifacts. A very common practical compromise for both 2D and 3D MR imaging protocols is to acquire volumetric MR images with high in-plane resolution, but lower through-plane resolution. In addition to having poor resolution in one orientation, 2D MRI acquisitions will also have aliasing artifacts, which further degrade the appearance of these images. This paper presents an approach SMORE1 based on convolutional neural networks (CNNs) that restores image quality by improving resolution and reducing aliasing in MR images.2 This approach is self-supervised, which requires no external training data because the high-resolution and low-resolution data that are present in the image itself are used for training. For 3D MRI, the method consists of only one self-supervised super-resolution (SSR) deep CNN that is trained from the volumetric image data. For 2D MRI, there is a self-supervised anti-aliasing (SAA) deep CNN that precedes the SSR CNN, also trained from the volumetric image data. Both methods were evaluated on a broad collection of MR data, including filtered and downsampled images so that quantitative metrics could be computed and compared, and actual acquired low resolution images for which visual and sharpness measures could be computed and compared. The super-resolution method is shown to be visually and quantitatively superior to previously reported methods.

摘要

高分辨率磁共振(MR)图像在许多临床和研究应用中都需要。然而,获取具有高信噪比(SNR)的此类图像可能需要较长的扫描时间,这对患者舒适度不利,成本更高,并且使图像容易受到运动伪影的影响。对于 2D 和 3D MR 成像协议,一个非常常见的实际折衷方案是获取具有高平面内分辨率但较低穿透分辨率的容积 MR 图像。除了在一个方向上分辨率较差外,2D MRI 采集还会出现混叠伪影,这进一步降低了这些图像的外观。本文提出了一种基于卷积神经网络(CNN)的方法 SMORE1,该方法通过提高分辨率和减少 MR 图像中的混叠来改善图像质量。这种方法是自我监督的,不需要外部训练数据,因为图像本身中存在的高分辨率和低分辨率数据可用于训练。对于 3D MRI,该方法仅由一个从容积图像数据训练的自我监督超分辨率(SSR)深度 CNN 组成。对于 2D MRI,有一个自我监督的反混叠(SAA)深度 CNN,它也从前述的容积图像数据训练。这两种方法都在广泛的 MR 数据集合上进行了评估,包括滤波和下采样图像,以便可以计算和比较定量指标,以及可以计算和比较实际获取的低分辨率图像的视觉和锐度度量。与以前报道的方法相比,超分辨率方法在视觉和定量方面都表现出色。

相似文献

1
SMORE: A Self-Supervised Anti-Aliasing and Super-Resolution Algorithm for MRI Using Deep Learning.
IEEE Trans Med Imaging. 2021 Mar;40(3):805-817. doi: 10.1109/TMI.2020.3037187. Epub 2021 Mar 2.
2
Applications of a deep learning method for anti-aliasing and super-resolution in MRI.
Magn Reson Imaging. 2019 Dec;64:132-141. doi: 10.1016/j.mri.2019.05.038. Epub 2019 Jun 24.
3
A Deep Learning Based Anti-aliasing Self Super-resolution Algorithm for MRI.
Med Image Comput Comput Assist Interv. 2018 Sep;11070:100-108. doi: 10.1007/978-3-030-00928-1_12. Epub 2018 Sep 26.
5
Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
Comput Med Imaging Graph. 2021 Jun;90:101897. doi: 10.1016/j.compmedimag.2021.101897. Epub 2021 Mar 11.
6
SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI.
Neuroimage. 2022 Jun;253:119033. doi: 10.1016/j.neuroimage.2022.119033. Epub 2022 Mar 1.
7
Super-resolution musculoskeletal MRI using deep learning.
Magn Reson Med. 2018 Nov;80(5):2139-2154. doi: 10.1002/mrm.27178. Epub 2018 Mar 26.
8
Dose reduction and image enhancement in micro-CT using deep learning.
Med Phys. 2023 Sep;50(9):5643-5656. doi: 10.1002/mp.16385. Epub 2023 Apr 5.
10
Rapid 2D Na MRI of the calf using a denoising convolutional neural network.
Magn Reson Imaging. 2024 Jul;110:184-194. doi: 10.1016/j.mri.2024.04.027. Epub 2024 Apr 19.

引用本文的文献

1
TV-BASED DEEP 3D SELF SUPER-RESOLUTION FOR FMRI.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980709. Epub 2025 May 12.
3
Neuroimaging phenotype characterization of early aggressive and late severe multiple sclerosis: a case-control study.
Brain Commun. 2025 Jun 24;7(4):fcaf254. doi: 10.1093/braincomms/fcaf254. eCollection 2025.
4
Unsupervised single-image super-resolution for infant brain MRI.
Neuroimage. 2025 Jun 21;317:121293. doi: 10.1016/j.neuroimage.2025.121293.
5
Toward general text-guided multimodal brain MRI synthesis for diagnosis and medical image analysis.
Cell Rep Med. 2025 Jun 17;6(6):102182. doi: 10.1016/j.xcrm.2025.102182. Epub 2025 Jun 9.
6
Vasculature-informed spatial smoothing of white matter functional magnetic resonance imaging.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13406. doi: 10.1117/12.3047140. Epub 2025 Apr 11.
7
Super-Field MRI Synthesis for Infant Brains Enhanced by Dual Channel Latent Diffusion.
Med Image Comput Comput Assist Interv. 2024 Oct;15003:444-454. doi: 10.1007/978-3-031-72384-1_42. Epub 2024 Oct 3.
10
Can MRI radiomics distinguish residual adenocarcinoma from acellular mucin in treated rectal cancer?
Eur J Radiol. 2025 Mar;184:111986. doi: 10.1016/j.ejrad.2025.111986. Epub 2025 Feb 5.

本文引用的文献

1
A Deep Learning Based Anti-aliasing Self Super-resolution Algorithm for MRI.
Med Image Comput Comput Assist Interv. 2018 Sep;11070:100-108. doi: 10.1007/978-3-030-00928-1_12. Epub 2018 Sep 26.
2
Applications of a deep learning method for anti-aliasing and super-resolution in MRI.
Magn Reson Imaging. 2019 Dec;64:132-141. doi: 10.1016/j.mri.2019.05.038. Epub 2019 Jun 24.
3
Image super-resolution using progressive generative adversarial networks for medical image analysis.
Comput Med Imaging Graph. 2019 Jan;71:30-39. doi: 10.1016/j.compmedimag.2018.10.005. Epub 2018 Nov 16.
4
Advances in MRI Methodology.
Int Rev Neurobiol. 2018;141:31-76. doi: 10.1016/bs.irn.2018.08.008. Epub 2018 Sep 14.
5
Medical Image Imputation from Image Collections.
IEEE Trans Med Imaging. 2018 Aug 22. doi: 10.1109/TMI.2018.2866692.
6
MR Image Super-Resolution via Wide Residual Networks With Fixed Skip Connection.
IEEE J Biomed Health Inform. 2019 May;23(3):1129-1140. doi: 10.1109/JBHI.2018.2843819. Epub 2018 Jun 4.
7
Population Based Image Imputation.
Inf Process Med Imaging. 2017 Jun;10265:659-671. doi: 10.1007/978-3-319-59050-9_52. Epub 2017 May 23.
8
Self Super-resolution for Magnetic Resonance Images.
Med Image Comput Comput Assist Interv. 2016 Oct;9902:553-560. doi: 10.1007/978-3-319-46726-9_64. Epub 2016 Oct 2.
9
LRTV: MR Image Super-Resolution With Low-Rank and Total Variation Regularizations.
IEEE Trans Med Imaging. 2015 Dec;34(12):2459-66. doi: 10.1109/TMI.2015.2437894.
10
An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization.
Neuroimage. 2015 Sep;118:584-97. doi: 10.1016/j.neuroimage.2015.06.018. Epub 2015 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验