Symonová Radka, Jůza Tomáš, Tesfaye Million, Brabec Marek, Bartoň Daniel, Blabolil Petr, Draštík Vladislav, Kočvara Luboš, Muška Milan, Prchalová Marie, Říha Milan, Šmejkal Marek, Souza Allan T, Sajdlová Zuzana, Tušer Michal, Vašek Mojmír, Skubic Cene, Brabec Jakub, Kubečka Jan
Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
J Exp Zool A Ecol Integr Physiol. 2025 Mar;343(2):257-277. doi: 10.1002/jez.2886. Epub 2024 Dec 4.
Pikeperch (Sander Lucioperca) belongs to main predatory fish species in freshwater bodies throughout Europe playing the key role by reducing planktivorous fish abundance. Two size classes of the young-of-the-year (YOY) pikeperch are known in Europe and North America. Our long-term fish survey elucidates late-summer size distribution of YOY pikeperch in the Lipno Reservoir (Czechia) and recognizes two distinct subcohorts: smaller pelagic planktivores heavily outnumber larger demersal piscivores. To explore molecular mechanisms accompanying the switch from planktivory to piscivory, we compared brain transcriptomes of both subcohorts and identified 148 differentially transcribed genes. The pathway enrichment analyses identified the piscivorous phase to be associated with genes involved in collagen and extracellular matrix generation with numerous Gene Ontology (GO), while the planktivorous phase was associated with genes for non-muscle-myosins (NMM) with less GO terms. Transcripts further upregulated in planktivores from the periphery of the NMM network were Pmchl, Pomcl, and Pyyb, all involved also in appetite control and producing (an)orexigenic neuropeptides. Noncoding RNAs were upregulated in transcriptomes of planktivores including three transcripts of snoRNA U85. Thirty genes mostly functionally unrelated to those differentially transcribed were alternatively spliced between the subcohorts. Our results indicate planktivores as potentially driven by voracity to initiate the switch to piscivory, while piscivores undergo a dynamic brain development. We propose a spatiotemporal spreading of juvenile development over a longer period and larger spatial scales through developmental plasticity as an adaptation to exploiting all types of resources and decreasing the intraspecific competition.
梭鲈(Sander Lucioperca)是欧洲淡水水体中的主要捕食性鱼类,通过减少浮游性鱼类数量发挥着关键作用。在欧洲和北美,已知当年幼鱼(YOY)梭鲈有两个大小类别。我们的长期鱼类调查阐明了利普诺水库(捷克)当年幼鱼梭鲈夏末的大小分布,并识别出两个不同的亚群:较小的浮游性浮游生物食性者数量远超较大的底栖肉食性者。为了探究从浮游生物食性转变为肉食性所伴随的分子机制,我们比较了两个亚群的脑转录组,并鉴定出148个差异转录基因。通路富集分析表明,肉食性阶段与参与胶原蛋白和细胞外基质生成的基因相关,有众多基因本体(GO)术语,而浮游生物食性阶段与非肌肉肌球蛋白(NMM)基因相关,GO术语较少。在NMM网络外围的浮游生物食性者中进一步上调的转录本是Pmchl、Pomcl和Pyyb,它们也都参与食欲控制并产生(促)食欲神经肽。非编码RNA在浮游生物食性者的转录组中上调,包括snoRNA U85的三个转录本。在两个亚群之间,有30个功能上大多与差异转录基因无关的基因发生了可变剪接。我们的结果表明,浮游生物食性者可能受食欲驱使开始向肉食性转变,而肉食性者经历动态的脑发育。我们提出,通过发育可塑性,幼鱼发育在更长时期和更大空间尺度上进行时空扩展,作为一种适应策略,以利用所有类型的资源并减少种内竞争。