Wu Haiping, Huang Jiaqi, Qu Zhengyao, Zheng Xueling, Tan Sirui, Du Wei, Cai Guanming, Zhao Zhong, Wu Jing, Li Daiqi
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China.
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430200, P. R. China.
Adv Sci (Weinh). 2025 Jan;12(4):e2411290. doi: 10.1002/advs.202411290. Epub 2024 Dec 4.
The surge in modern civil technologies demands a transformation in cement composites to surpass traditional roles and integrate smart functionalities. In this regard, enhancing the electrical conductivity of cement composites is a critical challenge. This study introduces a novel strategy for the self-propagating formation of expandable graphite-based high-conductivity cement composites through a simple thermal treatment with 3 wt.% expandable graphite and 1 wt.%carbon fiber as conductive fillers. Inspired by the popcorn effect, this method leverages the rapid expansion of graphite at high temperatures, promoting contact between conductive fillers and forming new conductive networks. The obtained composites demonstrate a remarkable reduction of 60% in electrical resistance after heat treatment compared to the electrical resistance of standard cement composites, and the enhancing mechanisms is explored. The conductive properties endow the material with excellent electrothermal (>100 °C at 10 V), electrothermochromic (response time of 2 s), and electromagnetic interference shielding (42 dB at 12.4 GHz) performance. This innovative approach provides vast opportunities for developing smart infrastructure with enhanced electrical properties, regarded as a promising candidate for promoting next-generation buildings and infrastructures.
现代民用技术的迅猛发展要求水泥基复合材料进行变革,以超越其传统作用并融入智能功能。在这方面,提高水泥基复合材料的电导率是一项关键挑战。本研究介绍了一种新颖的策略,通过以3 wt.%可膨胀石墨和1 wt.%碳纤维作为导电填料进行简单热处理,自蔓延形成基于可膨胀石墨的高导电水泥基复合材料。受爆米花效应的启发,该方法利用石墨在高温下的快速膨胀,促进导电填料之间的接触并形成新的导电网络。与标准水泥基复合材料的电阻相比,所得复合材料在热处理后的电阻显著降低了60%,并对其增强机制进行了探索。导电性能赋予该材料优异的电热性能(10 V时>100°C)、电热变色性能(响应时间为2 s)和电磁干扰屏蔽性能(12.4 GHz时为42 dB)。这种创新方法为开发具有增强电学性能的智能基础设施提供了广阔机遇,被视为推动下一代建筑和基础设施发展的有前途的候选材料。