Liang Xiongwei, Yu Shaopeng, Meng Bo, Ju Yongfu, Wang Shuai, Wang Yingning
Cold Region Wetland Ecology and Environment Research Key Laboratory of Heilongjiang Province, Harbin University, Harbin 150086, China.
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150086, China.
Nanomaterials (Basel). 2025 Jun 18;15(12):948. doi: 10.3390/nano15120948.
The rational design of photoanode materials is pivotal for advancing photoelectrochemical (PEC) water splitting toward sustainable hydrogen production. This review highlights recent progress in the machine learning (ML)-assisted development of nanostructured metal oxide photoanodes, focusing on bridging materials discovery and device-level performance optimization. We first delineate the fundamental physicochemical criteria for efficient photoanodes, including suitable band alignment, visible-light absorption, charge carrier mobility, and electrochemical stability. Conventional strategies such as nanostructuring, elemental doping, and surface/interface engineering are critically evaluated. We then discuss the integration of ML techniques-ranging from high-throughput density functional theory (DFT)-based screening to experimental data-driven modeling-for accelerating the identification of promising oxides (e.g., BiVO, FeO, WO) and optimizing key parameters such as dopant selection, morphology, and catalyst interfaces. Particular attention is given to surrogate modeling, Bayesian optimization, convolutional neural networks, and explainable AI approaches that enable closed-loop synthesis-experiment-ML frameworks. ML-assisted performance prediction and tandem device design are also addressed. Finally, current challenges in data standardization, model generalizability, and experimental validation are outlined, and future perspectives are proposed for integrating ML with automated platforms and physics-informed modeling to facilitate scalable PEC material development for clean energy applications.
光阳极材料的合理设计对于推动光电化学(PEC)水分解以实现可持续制氢至关重要。本文综述重点介绍了机器学习(ML)辅助开发纳米结构金属氧化物光阳极的最新进展,着重于弥合材料发现与器件级性能优化之间的差距。我们首先阐述了高效光阳极的基本物理化学标准,包括合适的能带排列、可见光吸收、电荷载流子迁移率和电化学稳定性。对纳米结构化、元素掺杂和表面/界面工程等传统策略进行了批判性评估。然后,我们讨论了ML技术的整合——从基于高通量密度泛函理论(DFT)的筛选到实验数据驱动的建模——以加速识别有前景的氧化物(如BiVO、FeO、WO)并优化关键参数,如掺杂剂选择、形态和催化剂界面。特别关注代理建模、贝叶斯优化、卷积神经网络和可解释人工智能方法,这些方法能够实现闭环合成-实验-ML框架。还讨论了ML辅助的性能预测和串联器件设计。最后,概述了数据标准化、模型通用性和实验验证方面当前面临的挑战,并提出了未来展望,即整合ML与自动化平台以及物理信息建模,以促进用于清洁能源应用的可扩展PEC材料开发。