Suppr超能文献

用于OMOP通用数据模型的图形模型的演变

Evolution of a Graph Model for the OMOP Common Data Model.

作者信息

Kang Mengjia, Alvarado-Guzman Jose A, Rasmussen Luke V, Starren Justin B

机构信息

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.

Neo4j, Inc., San Mateo, California, United States.

出版信息

Appl Clin Inform. 2024 Oct;15(5):1056-1065. doi: 10.1055/s-0044-1791487. Epub 2024 Dec 4.

Abstract

OBJECTIVE

Graph databases for electronic health record (EHR) data have become a useful tool for clinical research in recent years, but there is a lack of published methods to transform relational databases to a graph database schema. We developed a graph model for the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) that can be reused across research institutions.

METHODS

We created and evaluated four models, representing two different strategies, for converting the standardized clinical and vocabulary tables of OMOP into a property graph model within the Neo4j graph database. Taking the Successful Clinical Response in Pneumonia Therapy (SCRIPT) and Collaborative Resource for Intensive care Translational science, Informatics, Comprehensive Analytics, and Learning (CRITICAL) cohorts as test datasets with different sizes, we compared two of the resulting graph models with respect to database performance including database building time, query complexity, and runtime for both cohorts.

RESULTS

Utilizing a graph schema that was optimized for storing critical information as topology rather than attributes resulted in a significant improvement in both data creation and querying. The graph database for our larger cohort, CRITICAL, can be built within 1 hour for 134,145 patients, with a total of 749,011,396 nodes and 1,703,560,910 edges.

DISCUSSION

To our knowledge, this is the first generalized solution to convert the OMOP CDM to a graph-optimized schema. Despite being developed for studies at a single institution, the modeling method can be applied to other OMOP CDM v5.x databases. Our evaluation with the SCRIPT and CRITICAL cohorts and comparison between the current and previous versions show advantages in code simplicity, database building, and query speed.

CONCLUSION

We developed a method for converting OMOP CDM databases into graph databases. Our experiments revealed that the final model outperformed the initial relational-to-graph transformation in both code simplicity and query efficiency, particularly for complex queries.

摘要

目的

近年来,用于电子健康记录(EHR)数据的图形数据库已成为临床研究的有用工具,但缺乏将关系数据库转换为图形数据库模式的已发表方法。我们开发了一种用于观察性医疗结果合作组织(OMOP)通用数据模型(CDM)的图形模型,该模型可在各研究机构中重复使用。

方法

我们创建并评估了四种模型,代表两种不同策略,用于将OMOP的标准化临床和词汇表表转换为Neo4j图形数据库中的属性图模型。以肺炎治疗成功临床反应(SCRIPT)和重症监护转化科学、信息学、综合分析与学习协作资源(CRITICAL)队列作为不同规模的测试数据集,我们比较了两个生成的图形模型在数据库性能方面的差异,包括数据库构建时间、查询复杂度以及两个队列的运行时间。

结果

使用针对将关键信息存储为拓扑结构而非属性进行优化的图形模式,在数据创建和查询方面均有显著改进。对于我们较大的队列CRITICAL,其图形数据库可在1小时内为134,145名患者构建完成,共有749,011,396个节点和1,703,5,60,910条边。

讨论

据我们所知,这是将OMOP CDM转换为图形优化模式的首个通用解决方案。尽管该模型是为单个机构的研究而开发,但建模方法可应用于其他OMOP CDM v5.x数据库。我们对SCRIPT和CRITICAL队列的评估以及当前版本与先前版本的比较显示,在代码简洁性、数据库构建和查询速度方面具有优势。

结论

我们开发了一种将OMOP CDM数据库转换为图形数据库的方法。我们的实验表明,最终模型在代码简洁性和查询效率方面均优于初始的从关系型到图形的转换,特别是对于复杂查询。

相似文献

1
Evolution of a Graph Model for the OMOP Common Data Model.用于OMOP通用数据模型的图形模型的演变
Appl Clin Inform. 2024 Oct;15(5):1056-1065. doi: 10.1055/s-0044-1791487. Epub 2024 Dec 4.

本文引用的文献

9
Reactome graph database: Efficient access to complex pathway data.Reactome 图形数据库:高效访问复杂的通路数据。
PLoS Comput Biol. 2018 Jan 29;14(1):e1005968. doi: 10.1371/journal.pcbi.1005968. eCollection 2018 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验