Suppr超能文献

集中式和联邦式数据质量管理方法的协同作用:来自国家 COVID 队列协作的报告。

Synergies between centralized and federated approaches to data quality: a report from the national COVID cohort collaborative.

机构信息

Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.

Palantir Technologies, Denver, Colorado, USA.

出版信息

J Am Med Inform Assoc. 2022 Mar 15;29(4):609-618. doi: 10.1093/jamia/ocab217.

Abstract

OBJECTIVE

In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations.

MATERIALS AND METHODS

We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements.

RESULTS

Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback.

DISCUSSION

We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for DQ improvement that will support improved research analytics locally and in aggregate.

CONCLUSION

By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.

摘要

目的

为应对 COVID-19,信息学界团结一致,尽可能多地汇集临床数据,通过协作分析来描述这种新疾病并减轻其影响。国家 COVID 队列协作(N3C)现在是美国历史上最大的公开可用的受 HIPAA 限制的数据集,拥有超过 640 万患者,这证明了 100 多个组织的合作。

材料与方法

我们使用 4 个联邦通用数据模型,开发了一个从 56 个参与数据合作伙伴中摄取、协调和集中数据的管道。N3C 数据质量(DQ)审查涉及自动和手动程序。在这个过程中,我们在集中化环境中发现了一些 DQ 启发式方法,包括在管道内部和下游基于项目的分析过程中。向站点反馈的信息导致了许多本地和集中化的 DQ 改进。

结果

除了公认的 DQ 发现之外,我们还发现了 15 个与源通用数据模型一致性、人口统计学、COVID 测试、病症、就诊、测量、观察、编码完整性和可用性相关的启发式方法。在 56 个站点中,有 37 个站点(66%)通过这些启发式方法发现了问题。这些站点在收到反馈后得到了改进。

讨论

我们发现了站点之间的 DQ 差异,如果仅使用联邦检查,很难发现这些差异。我们已经证明,集中化的 DQ 基准测试为 DQ 改进提供了独特的机会,这将支持本地和总体上改进研究分析。

结论

通过将 DQ 的快速、持续评估与大量多站点数据相结合,有可能以所需的规模和严谨性支持更细致的科学问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7185/8922170/29424cc2ce32/ocab217f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验