Hashimura Hidenori, Kuwana Satoshi, Nakagawa Hibiki, Abe Kenichi, Adachi Tomoko, Sugita Toyoko, Fujishiro Shoko, Honda Gen, Sawai Satoshi
Graduate School of Arts and Sciences, The University of Tokyo.
Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo.
Cell Struct Funct. 2024 Dec 27;49(2):135-153. doi: 10.1247/csf.24065. Epub 2024 Dec 4.
The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.
细胞黏菌盘基网柄菌是变形虫门的成员,在细胞生物学和发育生物学领域得到了广泛研究。盘基网柄菌的独特之处在于其具有遗传易处理性,经过半个多世纪的研究积累了大量数据。盘基网柄菌的荧光活细胞成像极大地促进了对包括胞质分裂、吞噬作用和细胞迁移等基础课题的研究。此外,其独特的生命周期使盘基网柄菌处于理解聚集性多细胞性的前沿,聚集性多细胞性是在 opisthokonta 和变形虫门进化枝中反复出现的进化特征。使用具有可分离光谱特性的多种荧光蛋白(FP)和标签对于追踪聚集体中的细胞以及识别共同发生的生物分子事件和构成细胞骨架、膜脂、第二信使和基因表达动态基础的因素至关重要。然而,在盘基网柄菌中,常用的 FP 种类数量限制在两三种。在本研究中,我们探索了使用新一代 FP 对盘基网柄菌进行实际的四到五色荧光成像。我们表明黄色荧光蛋白 Achilles 和红色荧光蛋白 mScarlet-I 都能产生高信号,并允许灵敏检测快速基因诱导。除了 HaloTag 配体 SaraFluor 650T 外,调色板进一步扩展到包括蓝色(mTagBFP2 和 mTurquosie2)、大斯托克斯位移的 LSSmGFP 和近红外(miRFP670nano3)FP。因此,我们证明了使用传统共聚焦显微镜对盘基网柄菌进行四色和五色成像的可行性。
荧光成像;细胞器;细胞骨架;小 GTP 酶;盘基网柄菌