Suppr超能文献

1-萘酚的分子间不对称芳基化脱芳构化反应

Intermolecular Asymmetric Arylative Dearomatization of 1-Naphthols.

作者信息

Kadarauch Max, Moss Thomas A, Phipps Robert J

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Trumpington, Cambridge CB2 0AA, U.K.

出版信息

J Am Chem Soc. 2024 Dec 18;146(50):34970-34978. doi: 10.1021/jacs.4c14754. Epub 2024 Dec 4.

Abstract

Arylative dearomatization forms quaternary stereocenters in cyclic systems with the concomitant introduction of an aromatic ring. Pd-catalyzed arylative dearomatization, which uses conditions analogous to cross-coupling, has emerged as a powerful method in an intramolecular context. But translating this from intramolecular cyclizations to an intermolecular process has proven extremely challenging: examples are scarce, and those that exist have not been rendered enantioselective, despite the potential for broad application in medicinal chemistry and natural product synthesis. We describe a strategy that utilizes attractive interactions between the ligand and substrate to overcome this challenge and promote intermolecular, highly enantioselective arylative dearomatization of naphthols using a broad range of aryl bromide electrophiles. Crucial to success is the use of the readily accessed sulfonated chiral phosphine sSPhos, which we believe engages in attractive electrostatic interactions with the substrate. Not only does sSPhos control enantioselectivity but it also drastically accelerates the reaction, most likely by facilitating the challenging palladation step that initiates dearomatization.

摘要

芳基化去芳构化反应在环状体系中形成季碳立体中心的同时引入一个芳环。钯催化的芳基化去芳构化反应,其使用的条件类似于交叉偶联反应,已成为分子内反应中的一种强大方法。但是,将这种反应从分子内环化反应转化为分子间反应已被证明极具挑战性:相关实例很少,而且现有的实例尚未实现对映选择性,尽管其在药物化学和天然产物合成中具有广泛应用的潜力。我们描述了一种策略,该策略利用配体与底物之间的吸引相互作用来克服这一挑战,并使用多种芳基溴亲电试剂促进萘酚的分子间、高度对映选择性芳基化去芳构化反应。成功的关键在于使用易于获得的磺化手性膦sSPhos,我们认为它与底物发生吸引性静电相互作用。sSPhos不仅控制对映选择性,还极大地加速了反应,很可能是通过促进引发去芳构化反应的具有挑战性的钯化步骤来实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b6/11664591/38540999a80f/ja4c14754_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验