Suppr超能文献

机器学习与国家早期预警评分在预测患者病情恶化风险方面的表现:一项关于急诊入院的单中心研究。

Performance of machine learning versus the national early warning score for predicting patient deterioration risk: a single-site study of emergency admissions.

作者信息

Watson Matthew, Boulitsakis Logothetis Stelios, Green Darren, Holland Mark, Chambers Pinkie, Al Moubayed Noura

机构信息

Department of Computer Science, Durham University, Durham, UK.

Department of Public Health and Primary Care, Cambridge University, Cambridge, UK.

出版信息

BMJ Health Care Inform. 2024 Dec 4;31(1):e101088. doi: 10.1136/bmjhci-2024-101088.

Abstract

OBJECTIVES

Increasing operational pressures on emergency departments (ED) make it imperative to quickly and accurately identify patients requiring urgent clinical intervention. The widespread adoption of electronic health records (EHR) makes rich feature patient data sets more readily available. These large data stores lend themselves to use in modern machine learning (ML) models. This paper investigates the use of transformer-based models to identify critical deterioration in unplanned ED admissions, using free-text fields, such as triage notes, and tabular data, including early warning scores (EWS).

DESIGN

A retrospective ML study.

SETTING

A large ED in a UK university teaching hospital.

METHODS

We extracted rich feature sets of routine clinical data from the EHR and systematically measured the performance of tree- and transformer-based models for predicting patient mortality or admission to critical care within 24 hours of presentation to ED. We compared our proposed models to the National EWS (NEWS).

RESULTS

Models were trained on 174 393 admission records. We found that models including free-text triage notes outperform structured tabular data models, achieving an average precision of 0.92, compared with 0.75 for tree-based models and 0.12 for NEWS.

CONCLUSIONS

Our findings suggests that machine learning models using free-text data have the potential to improve clinical decision-making in the ED; our techniques significantly reduce alert rate while detecting most high-risk patients missed by NEWS.

摘要

目标

急诊科(ED)面临的运营压力不断增加,因此必须快速准确地识别需要紧急临床干预的患者。电子健康记录(EHR)的广泛采用使丰富的特征患者数据集更容易获取。这些大型数据存储适合用于现代机器学习(ML)模型。本文研究了基于变压器的模型在识别非计划急诊入院患者的严重病情恶化方面的应用,使用了诸如分诊记录等自由文本字段以及包括早期预警评分(EWS)在内的表格数据。

设计

一项回顾性机器学习研究。

地点

英国一所大学教学医院的大型急诊科。

方法

我们从电子健康记录中提取了常规临床数据的丰富特征集,并系统地测量了基于树和基于变压器的模型在预测患者在急诊科就诊后24小时内的死亡率或入住重症监护病房情况方面的性能。我们将我们提出的模型与国家早期预警评分(NEWS)进行了比较。

结果

模型在174393条入院记录上进行了训练。我们发现,包括自由文本分诊记录的模型优于结构化表格数据模型,平均精度达到0.92,而基于树的模型为0.75,NEWS为0.12。

结论

我们的研究结果表明,使用自由文本数据的机器学习模型有潜力改善急诊科的临床决策;我们的技术在检测出NEWS遗漏的大多数高危患者的同时,显著降低了警报率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f62/11624723/3ca3e33463c0/bmjhci-31-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验