Suppr超能文献

在医院中检测病情恶化的患者:一种新型评分系统的开发和验证。

Detecting Deteriorating Patients in the Hospital: Development and Validation of a Novel Scoring System.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, and.

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

出版信息

Am J Respir Crit Care Med. 2021 Jul 1;204(1):44-52. doi: 10.1164/rccm.202007-2700OC.

Abstract

Late recognition of patient deterioration in hospital is associated with worse outcomes, including higher mortality. Despite the widespread introduction of early warning score (EWS) systems and electronic health records, deterioration still goes unrecognized. To develop and externally validate a Hospital- wide Alerting via Electronic Noticeboard (HAVEN) system to identify hospitalized patients at risk of reversible deterioration. This was a retrospective cohort study of patients 16 years of age or above admitted to four UK hospitals. The primary outcome was cardiac arrest or unplanned admission to the ICU. We used patient data (vital signs, laboratory tests, comorbidities, and frailty) from one hospital to train a machine-learning model (gradient boosting trees). We internally and externally validated the model and compared its performance with existing scoring systems (including the National EWS, laboratory-based acute physiology score, and electronic cardiac arrest risk triage score). We developed the HAVEN model using 230,415 patient admissions to a single hospital. We validated HAVEN on 266,295 admissions to four hospitals. HAVEN showed substantially higher discrimination (c-statistic, 0.901 [95% confidence interval, 0.898-0.903]) for the primary outcome within 24 hours of each measurement than other published scoring systems (which range from 0.700 [0.696-0.704] to 0.863 [0.860-0.865]). With a precision of 10%, HAVEN was able to identify 42% of cardiac arrests or unplanned ICU admissions with a lead time of up to 48 hours in advance, compared with 22% by the next best system. The HAVEN machine-learning algorithm for early identification of in-hospital deterioration significantly outperforms other published scores such as the National EWS.

摘要

医院内患者病情恶化的识别延迟与较差的预后相关,包括更高的死亡率。尽管广泛引入了早期预警评分(EWS)系统和电子健康记录,病情恶化仍然未被识别。为了开发和外部验证一种通过电子布告栏进行全院警报(HAVEN)系统,以识别有可逆性恶化风险的住院患者。这是一项回顾性队列研究,纳入了年龄在 16 岁及以上的在四家英国医院住院的患者。主要结局是心脏骤停或计划外转入 ICU。我们使用一家医院的患者数据(生命体征、实验室检查、合并症和虚弱)来训练机器学习模型(梯度提升树)。我们对模型进行了内部和外部验证,并将其性能与现有的评分系统(包括国家 EWS、基于实验室的急性生理学评分和电子心脏骤停风险分诊评分)进行了比较。我们使用单一医院的 230415 例患者入院数据开发了 HAVEN 模型。我们在四家医院的 266295 例患者入院数据中验证了 HAVEN。HAVEN 在每个测量点后 24 小时内对主要结局的预测能力明显高于其他已发表的评分系统(范围为 0.700 [0.696-0.704]至 0.863 [0.860-0.865]),其判别能力更高(C 统计量为 0.901 [0.898-0.903])。在精度为 10%的情况下,HAVEN 能够在提前 48 小时内识别出 42%的心脏骤停或计划外 ICU 入院,而最佳的下一个系统只能识别 22%。用于早期识别院内恶化的 HAVEN 机器学习算法明显优于其他已发表的评分系统,如国家 EWS。

相似文献

引用本文的文献

7
The early warning paradox.早期预警悖论。
NPJ Digit Med. 2025 Feb 3;8(1):81. doi: 10.1038/s41746-024-01408-x.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验