Bakouei Mostafa, Kalantarifard Ali, Sundara Raju Indraja, Avsievich Tatiana, Rannaste Lauri, Kreivi Marjut, Elbuken Caglar
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
VTT Technical Research Centre of Finland, Oulu, Finland.
Microsyst Nanoeng. 2024 Dec 5;10(1):183. doi: 10.1038/s41378-024-00815-0.
The exceptional ability of liposomes to mimic a cellular lipid membrane makes them invaluable tools in biomembrane studies and bottom-up synthetic biology. Microfluidics provides a promising toolkit for creating giant liposomes in a controlled manner. Nevertheless, challenges associated with the microfluidic formation of double emulsions, as precursors to giant liposomes, limit the full exploration of this potential. In this study, we propose a PDMS-glass capillary hybrid device as a facile and versatile tool for the formation of double emulsions which not only eliminates the need for selective surface treatment, a well-known problem with PDMS formation chips, but also provides fabrication simplicity and reusability compared to the glass-capillary formation chips. These advantages make the presented device a versatile tool for forming double emulsions with varying sizes (spanning two orders of magnitude in diameter), shell thickness, number of compartments, and choice of solvents. We achieved robust thin shell double emulsion formation by operating the hybrid chip in double dripping mode without performing hydrophilic/phobic treatment a priori. In addition, as an alternative to the conventional, time-consuming density-based separation method, a tandem separation chip is developed to deliver double emulsions free of any oil droplet contamination in a continuous and rapid manner without any need for operator handling. The applicability of the device was demonstrated by forming giant liposomes using the solvent extraction method. This easy-to-replicate, flexible, and reliable microfluidic platform for the formation and separation of double emulsion templates paves the way for the high-throughput microfluidic generation of giant liposomes and synthetic cells, opening exciting avenues for biomimetic research. The presented giant liposome assembly line features a novel treatment-free hybrid chip for double emulsion formation coupled with a high throughput separation chip for sample purification.
脂质体模拟细胞脂质膜的卓越能力使其成为生物膜研究和自下而上合成生物学中不可或缺的工具。微流控技术为以可控方式制备巨型脂质体提供了一套很有前景的工具。然而,作为巨型脂质体前体的双乳液微流控形成相关的挑战限制了对这一潜力的充分探索。在本研究中,我们提出了一种聚二甲基硅氧烷(PDMS)-玻璃毛细管混合装置,作为一种简便且通用的双乳液形成工具,它不仅消除了对选择性表面处理的需求(这是PDMS形成芯片的一个众所周知的问题),而且与玻璃毛细管形成芯片相比,具有制造简单和可重复使用的优点。这些优点使所展示的装置成为一种通用工具,可用于形成具有不同尺寸(直径跨度达两个数量级)、壳厚度、隔室数量和溶剂选择的双乳液。我们通过在双滴模式下操作混合芯片,无需事先进行亲水/疏水处理,实现了稳定的薄壳双乳液形成。此外,作为传统的、耗时的基于密度的分离方法的替代方案,我们开发了一种串联分离芯片,以连续、快速的方式输送不含任何油滴污染的双乳液,无需操作人员处理。通过使用溶剂萃取法形成巨型脂质体,证明了该装置的适用性。这种易于复制、灵活且可靠的用于双乳液模板形成和分离的微流控平台为巨型脂质体和合成细胞的高通量微流控制备铺平了道路,为仿生研究开辟了令人兴奋的途径。所展示的巨型脂质体装配线具有用于双乳液形成的新型免处理混合芯片以及用于样品纯化的高通量分离芯片。