Suppr超能文献

基于位错迁移率对碳化钽异常硬度的见解。

Insights into the anomalous hardness of the tantalum carbides from dislocation mobility.

作者信息

Watkins Brennan R, Haas Blacksher C, Stubbers Alyssa, Thompson Gregory B, Weinberger Christopher R

机构信息

Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.

Department of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL, USA.

出版信息

Nat Commun. 2024 Dec 4;15(1):10585. doi: 10.1038/s41467-024-54893-9.

Abstract

The tantalum carbides, TaC, have been repeatedly shown to harden dramatically with some loss of carbon content, then soften with further decarburization. First observed in 1963, this anomalous hardness behavior has been reproduced for decades without satisfactory explanation. Prior attempts to characterize this phenomenon using elastic stiffnesses have failed to reproduce the anomalous hardness behavior. In this work, we demonstrate a change in slip system preference from {111} to {110} in TaC as x decreases, while no such transition is observed in TiC. We find this to be the primary mechanism of the anomalous hardness, arising from reduced energetic favorability of dissociation of dislocations on {111} into Shockley partials at lower carbon contents. We also present experimental hardness measurements for bulk and thin-film TaC at different carbon contents. An anomalous hardness peak is observed in the bulk samples, but not in the thin films, due to loss of dislocation plasticity in the nanocrystalline films.

摘要

碳化钽(TaC)已反复表明,随着碳含量的一些损失会显著硬化,然后随着进一步脱碳而软化。这种异常的硬度行为于1963年首次被观察到,几十年来一直被重现,但没有得到令人满意的解释。此前试图用弹性刚度来表征这一现象的尝试未能重现这种异常的硬度行为。在这项工作中,我们证明了随着x的减小,TaC中的滑移系偏好从{111}转变为{110},而在TiC中未观察到这种转变。我们发现这是异常硬度的主要机制,其源于在较低碳含量下,位错在{111}上解离为肖克莱不全位错的能量有利性降低。我们还给出了不同碳含量下块状和薄膜TaC的实验硬度测量结果。由于纳米晶薄膜中位错塑性的丧失,在块状样品中观察到了异常硬度峰值,而在薄膜中未观察到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97e3/11618474/ef97892df594/41467_2024_54893_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验