Almalahi Mohammed A, Aldwoah Khaled, Alqarni Faez, Hleili Manel, Shah Kamal, Birkea Fathea M O
Department of Mathematics, Hajjah University, Hajjah, Yemen.
Department of Artificial Intelligence, Faculty of Science and Information Technology, Al-Razi University, Sana'a, Yemen.
Sci Rep. 2024 Dec 4;14(1):30264. doi: 10.1038/s41598-024-81568-8.
This research investigates the dynamics of nonlinear coupled hybrid systems using a modified Mittag-Leffler fractional derivative. The primary objective is to establish criteria for the existence and uniqueness of solutions through the implementation of Dhage's hybrid fixed-point theorem. The study further analyzes the stability of the proposed model. To demonstrate the practical application of this framework, we utilize a modified Mittag-Leffler operator to model the transmission of the Ebola virus, known for its complex and diverse dynamics. The analysis is conducted using a combination of theoretical and numerical methods, including transforming the system of equations into an equivalent integral form, applying the fixed-point theorem, and developing a numerical scheme based on Lagrange's interpolation for simulating the Ebola virus model. This study aims to enhance our understanding of Ebola virus dynamics and provide valuable insights for developing effective control strategies.
本研究使用修正的米塔格 - 莱夫勒分数阶导数研究非线性耦合混合系统的动力学。主要目标是通过应用达格混合不动点定理来建立解的存在性和唯一性准则。该研究进一步分析了所提出模型的稳定性。为了证明该框架的实际应用,我们使用修正的米塔格 - 莱夫勒算子对埃博拉病毒的传播进行建模,其具有复杂多样的动力学。分析采用理论和数值方法相结合的方式进行,包括将方程组转化为等价的积分形式、应用不动点定理以及基于拉格朗日插值开发数值方案来模拟埃博拉病毒模型。本研究旨在增进我们对埃博拉病毒动力学的理解,并为制定有效的控制策略提供有价值的见解。