Suppr超能文献

多相状态方程的神经网络表示

Neural network representations of multiphase Equations of State.

作者信息

Kevrekidis George A, Serino Daniel A, Kaltenborn M Alexander R, Gammel J Tinka, Burby Joshua W, Klasky Marc L

机构信息

Los Alamos National Laboratory, Los Alamos, NM, USA.

Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Sci Rep. 2024 Dec 5;14(1):30288. doi: 10.1038/s41598-024-81445-4.

Abstract

Equations of State model relations between thermodynamic variables and are ubiquitous in scientific modelling, appearing in modern day applications ranging from Astrophysics to Climate Science. The three desired properties of a general Equation of State model are adherence to the Laws of Thermodynamics, incorporation of phase transitions, and multiscale accuracy. Analytic models that adhere to all three are hard to develop and cumbersome to work with, often resulting in sacrificing one of these elements for the sake of efficiency. In this work, two deep-learning methods are proposed that provably satisfy the first and second conditions on a large-enough region of thermodynamic variable space. The first is based on learning the generating function (thermodynamic potential) while the second is based on structure-preserving, symplectic neural networks, respectively allowing modifications near or on phase transition regions. They can be used either "from scratch" to learn a full Equation of State, or in conjunction with a pre-existing consistent model, functioning as a modification that better adheres to experimental data. We formulate the theory and provide several computational examples to justify both approaches, highlighting their advantages and shortcomings.

摘要

状态方程模型描述了热力学变量之间的关系,在科学建模中无处不在,出现在从天体物理学到气候科学等现代应用领域。一般状态方程模型的三个理想特性是符合热力学定律、纳入相变以及多尺度精度。同时满足这三个特性的解析模型很难开发且使用起来很繁琐,通常会为了效率而牺牲其中一个要素。在这项工作中,我们提出了两种深度学习方法,它们在足够大的热力学变量空间区域内可证明地满足前两个条件。第一种基于学习生成函数(热力学势),而第二种基于保结构的辛神经网络,分别允许在相变区域附近或相变区域上进行修正。它们既可以“从头开始”用于学习完整的状态方程,也可以与现有的一致模型结合使用,作为能更好符合实验数据的修正。我们阐述了理论并提供了几个计算示例来证明这两种方法的合理性,突出它们的优点和缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/11618593/15e3b18ee3fd/41598_2024_81445_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验