Deuter Daniel, Haj Amer, Brawanski Alexander, Krenkel Lars, Schmidt Nils-Ole, Doenitz Christian
Klinik und Poliklinik für Neurochirurgie, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
Regensburg Center of Biomedical Engineering (RCBE), OTH Regensburg and University of Regensburg, 93053, Regensburg, Germany.
Acta Neurochir (Wien). 2025 Mar 3;167(1):56. doi: 10.1007/s00701-025-06469-9.
A widely accepted tool to assess hemodynamics, one of the most important factors in aneurysm pathophysiology, is Computational Fluid Dynamics (CFD). As current workflows are still time consuming and difficult to operate, CFD is not yet a standard tool in the clinical setting. There it could provide valuable information on aneurysm treatment, especially regarding local risks of rupture, which might help to optimize the individualized strategy of neurosurgical dissection during microsurgical aneurysm clipping.
We established and validated a semi-automated workflow using 3D rotational angiographies of 24 intracranial aneurysms from patients having received aneurysm treatment at our centre. Reconstruction of vessel geometry and generation of volume meshes was performed using AMIRA 6.2.0 and ICEM 17.1. For solving ANSYS CFX was used. For validational checks, tests regarding the volumetric impact of smoothing operations, the impact of mesh sizes on the results (grid convergence), geometric mesh quality and time tests for the time needed to perform the workflow were conducted in subgroups.
Most of the steps of the workflow were performed directly on the 3D images requiring no programming experience. The workflow led to final CFD results in a mean time of 22 min 51.4 s (95%-CI 20 min 51.562 s-24 min 51.238 s, n = 5). Volume of the geometries after pre-processing was in mean 4.46% higher than before in the analysed subgroup (95%-CI 3.43-5.50%). Regarding mesh sizes, mean relative aberrations of 2.30% (95%-CI 1.51-3.09%) were found for surface meshes and between 1.40% (95%-CI 1.07-1.72%) and 2.61% (95%-CI 1.93-3.29%) for volume meshes. Acceptable geometric mesh quality of volume meshes was found.
We developed a semi-automated workflow for aneurysm CFD to benefit from hemodynamic data in the clinical setting. The ease of handling opens the workflow to clinicians untrained in programming. As previous studies have found that the distribution of hemodynamic parameters correlates with thin-walled aneurysm areas susceptible to rupture, these data might be beneficial for the operating neurosurgeon during aneurysm surgery, even in acute cases.
计算流体动力学(CFD)是评估血流动力学的一种广泛接受的工具,而血流动力学是动脉瘤病理生理学中最重要的因素之一。由于当前的工作流程仍然耗时且操作困难,CFD尚未成为临床环境中的标准工具。在临床中,它可以提供有关动脉瘤治疗的有价值信息,特别是关于局部破裂风险的信息,这可能有助于优化显微外科动脉瘤夹闭术中神经外科解剖的个体化策略。
我们使用来自在我们中心接受动脉瘤治疗的患者的24个颅内动脉瘤的3D旋转血管造影建立并验证了一种半自动工作流程。使用AMIRA 6.2.0和ICEM 17.1进行血管几何结构重建和体积网格生成。使用ANSYS CFX进行求解。为了进行验证检查,在亚组中进行了关于平滑操作的体积影响、网格大小对结果的影响(网格收敛)、几何网格质量以及执行工作流程所需时间的时间测试。
工作流程的大多数步骤直接在3D图像上执行,无需编程经验。该工作流程平均在22分51.4秒内得出最终CFD结果(95%置信区间20分51.562秒 - 24分51.238秒,n = 5)。在分析的亚组中,预处理后几何结构的体积平均比之前高4.46%(95%置信区间3.43 - 5.50%)。关于网格大小,表面网格的平均相对偏差为2.30%(95%置信区间1.51 - 3.09%),体积网格的平均相对偏差在1.40%(95%置信区间1.07 - 1.72%)和2.61%(95%置信区间1.93 - 3.29%)之间。发现体积网格的几何网格质量可接受。
我们开发了一种用于动脉瘤CFD的半自动工作流程,以便在临床环境中受益于血流动力学数据。其易于操作使未经过编程培训的临床医生也能使用该工作流程。由于先前的研究发现血流动力学参数的分布与易破裂的薄壁动脉瘤区域相关,这些数据可能对动脉瘤手术中的神经外科医生有益,即使在急性病例中也是如此。