Suppr超能文献

深度学习在骨质疏松症预测中的诊断准确性:一项系统评价和荟萃分析。

Diagnostic accuracy of deep learning in prediction of osteoporosis: a systematic review and meta-analysis.

作者信息

Amani Firouz, Amanzadeh Masoud, Hamedan Mahnaz, Amani Paniz

机构信息

Department of Community Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.

Department of Health Information Management, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.

出版信息

BMC Musculoskelet Disord. 2024 Dec 4;25(1):991. doi: 10.1186/s12891-024-08120-7.

Abstract

BACKGROUND

Osteoporosis is one of the most common metabolic diseases that is characterized by a decrease in bone density and a loss of the quality of the bone structure. The use of deep learning in the prediction of osteoporosis can provide a non-invasive, cost-effective, and efficient approach. The aim of this study is to investigate the diagnostic accuracy of deep learning in the prediction of osteoporosis.

METHODS

This is a systematic review and meta-analysis study that was conducted on the diagnostic accuracy of deep learning algorithms for predicting osteoporosis. A literature search was performed in electronic databases including PubMed, Elsevier, and Google Scholar to identify relevant articles until December 1, 2023. Articles were searched in databases by combining related terms such as "deep learning", "convolutional neural network", and "osteoporosis". We conducted title, abstract, and full-text screening based on inclusion/exclusion criteria. Various metrics, such as sensitivity, specificity, and area under the curve (AUC), were used to assess the diagnostic performance of deep learning models.

RESULTS

Out of the 181 articles initially identified, 10 studies were included in the analysis. All studies used a convolutional neural network (CNN) as the deep learning model. Three studies investigated multiple deep learning models. Eight studies used various architectures of CNN, such as ResNet, VGG, and EfficientNet. The pooled sensitivity and specificity were 0.86 (95% CI, 0.82-0.89) and 0.89 (95% CI, 0.85-0.91), respectively. The bivariate approach's pooled SROC curve produced an AUC of 0.94 (95% CI 0.91-0.95). The Diagnostic Odds Ratio (DOR) for the deep learning models was 49.09 (95% CI, 28.74-83.84). Deeks' funnel plot asymmetry test (P = 0.4) suggested no potential publication bias.

CONCLUSIONS

Deep learning has an acceptable performance for the diagnosis of osteoporosis, even better than other ML algorithms. However, further research is needed to validate the findings of this study in clinical trials.

摘要

背景

骨质疏松症是最常见的代谢性疾病之一,其特征是骨密度降低和骨结构质量丧失。在骨质疏松症预测中使用深度学习可以提供一种非侵入性、经济高效且有效的方法。本研究的目的是调查深度学习在骨质疏松症预测中的诊断准确性。

方法

这是一项关于深度学习算法预测骨质疏松症诊断准确性的系统评价和荟萃分析研究。在包括PubMed、爱思唯尔和谷歌学术在内的电子数据库中进行文献检索,以确定截至2023年12月1日的相关文章。通过组合“深度学习”、“卷积神经网络”和“骨质疏松症”等相关术语在数据库中搜索文章。我们根据纳入/排除标准进行标题、摘要和全文筛选。使用各种指标,如敏感性、特异性和曲线下面积(AUC),来评估深度学习模型的诊断性能。

结果

在最初确定的181篇文章中,有10项研究纳入分析。所有研究均使用卷积神经网络(CNN)作为深度学习模型。三项研究调查了多个深度学习模型。八项研究使用了CNN的各种架构,如ResNet、VGG和EfficientNet。合并后的敏感性和特异性分别为0.86(95%CI,0.82 - 0.89)和0.89(95%CI,0.85 - 0.91)。双变量方法的合并SROC曲线的AUC为0.94(95%CI 0.91 - 0.95)。深度学习模型的诊断优势比(DOR)为49.09(95%CI,28.74 - 83.84)。Deeks漏斗图不对称检验(P = 0.4)表明无潜在的发表偏倚。

结论

深度学习在骨质疏松症诊断方面具有可接受的性能,甚至优于其他机器学习算法。然而,需要进一步的研究在临床试验中验证本研究的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb7/11619613/7e9ac8f76faf/12891_2024_8120_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验