Suppr超能文献

机器学习算法在髋部骨质疏松症诊断中的应用:一项系统评价和荟萃分析研究。

Machine learning algorithms for diagnosis of hip bone osteoporosis: a systematic review and meta-analysis study.

机构信息

Department of Anesthesia, Cihan University - Sulaimaniya, Sulaymaniyah, Kurdistan Region, Iraq.

Medical Doctor (MD), School of Medicine, Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Iran.

出版信息

Biomed Eng Online. 2023 Jul 10;22(1):68. doi: 10.1186/s12938-023-01132-9.

Abstract

BACKGROUND

Osteoporosis is a significant health problem in the skeletal system, associated with bone tissue changes and its strength. Machine Learning (ML), on the other hand, has been accompanied by improvements in recent years and has been in the spotlight. This study is designed to investigate the Diagnostic Test Accuracy (DTA) of ML to detect osteoporosis through the hip dual-energy X-ray absorptiometry (DXA) images.

METHODS

The ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE were systematically searched until June 2023 for studies that tested the diagnostic precision of ML model-assisted for predicting an osteoporosis diagnosis.

RESULTS

The pooled sensitivity of univariate analysis of seven studies was 0.844 (95% CI 0.791 to 0.885, I = 94% for 7 studies). The pooled specificity of univariate analysis was 0.781 (95% CI 0.732 to 0.824, I = 98% for 7 studies). The pooled diagnostic odds ratio (DOR) was 18.91 (95% CI 14.22 to 25.14, I = 93% for 7 studies). The pooled mean positive likelihood ratio (LR) and the negative likelihood ratio (LR) were 3.7 and 0.22, respectively. Also, the summary receiver operating characteristics (sROC) of the bivariate model has an AUC of 0.878.

CONCLUSION

Osteoporosis can be diagnosed by ML with acceptable accuracy, and hip fracture prediction was improved via training in an Architecture Learning Network (ALN).

摘要

背景

骨质疏松症是骨骼系统的一个重大健康问题,与骨组织变化及其强度有关。另一方面,机器学习(ML)近年来得到了改进,并受到了关注。本研究旨在通过髋关节双能 X 射线吸收法(DXA)图像研究 ML 检测骨质疏松症的诊断测试准确性(DTA)。

方法

系统检索 ISI Web of Science、PubMed、Scopus、Cochrane 图书馆、IEEE Xplore 数字图书馆、CINAHL、Science Direct、PROSPERO 和 EMBASE,直到 2023 年 6 月,以查找测试 ML 模型辅助预测骨质疏松症诊断的诊断精度的研究。

结果

七项研究的单变量分析汇总敏感性为 0.844(95%CI 0.791-0.885,I=94%,7 项研究)。单变量分析汇总特异性为 0.781(95%CI 0.732-0.824,I=98%,7 项研究)。汇总诊断比值比(DOR)为 18.91(95%CI 14.22-25.14,I=93%,7 项研究)。汇总阳性似然比(LR)和阴性似然比(LR)分别为 3.7 和 0.22。此外,双变量模型的汇总受试者工作特征(sROC)曲线的 AUC 为 0.878。

结论

ML 可以以可接受的准确度诊断骨质疏松症,并且通过在架构学习网络(ALN)中进行训练,可以提高髋部骨折预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6194/10331995/323857670778/12938_2023_1132_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验