Park Sung Hun, Park Haedong, Nam Jwa-Min, Ke Yonggang, Liedl Tim, Tian Ye, Lee Seungwoo
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK.
Nanophotonics. 2023 May 17;12(13):2611-2621. doi: 10.1515/nanoph-2023-0024. eCollection 2023 Jun.
Moulding the flow of phononic waves in three-dimensional (3D) space plays a critical role in controlling the sound and thermal properties of matter. To this end, 3D phononic crystals (PnCs) have been considered the gold standard because their complete phononic bandgap (PnBG) enables omnidirectional inhibition of phononic wave propagation. Nevertheless, achieving a complete PnBG in the high-frequency regime is still challenging, as attaining the correspondingly demanded mesoscale 3D crystals consisting of continuous frame networks with conventional fabrications is difficult. Here, we report that a DNA origami-designed-3D crystal can serve as a hypersonic 3D PnC exhibiting the widest complete PnBG. DNA origami crystallization can unprecedentedly provide 3D crystals such that continuous frame 3D crystals at the mesoscale are realizable. Furthermore, their lattice symmetry can be molecularly programmed to be at the highest level in a hierarchy of symmetry groups and numbers, which can facilitate the widening of the PnBG. More importantly, conformal silicification can render DNA origami-3D crystals rigid. Overall, we predict that the widest hypersonic PnBG can be achieved with DNA origami-designed 3D crystals with optimal lattice geometry and silica fraction; our work can provide a blueprint for the design and fabrication of mesoscale 3D PnCs with a champion PnBG.
在三维(3D)空间中塑造声子波的流动对于控制物质的声学和热学性质起着关键作用。为此,3D声子晶体(PnC)被视为黄金标准,因为其完整的声子带隙(PnBG)能够全方位抑制声子波传播。然而,在高频区域实现完整的PnBG仍然具有挑战性,因为使用传统制造方法获得由连续框架网络组成的相应所需的中尺度3D晶体很困难。在此,我们报告一种DNA折纸设计的3D晶体可以作为一种高超音速3D PnC,展现出最宽的完整PnBG。DNA折纸结晶能够以前所未有的方式提供3D晶体,从而使中尺度的连续框架3D晶体得以实现。此外,它们的晶格对称性可以通过分子编程达到对称群和数量层次结构中的最高水平,这有助于拓宽PnBG。更重要的是,共形硅化可以使DNA折纸3D晶体变得坚硬。总体而言,我们预测通过具有最佳晶格几何形状和二氧化硅含量的DNA折纸设计的3D晶体可以实现最宽的高超音速PnBG;我们的工作可以为具有卓越PnBG的中尺度3D PnC的设计和制造提供蓝图。