Suppr超能文献

用于光学相控阵的超表面双合透镜片上集成,具有增强的光束转向功能。

On-chip integration of metasurface-doublet for optical phased array with enhanced beam steering.

作者信息

Wang Zhizhang, Ji Jitao, Ye Xin, Chen Yuxin, Li Xueyun, Song Wange, Fang Bin, Chen Ji, Zhu Shining, Li Tao

机构信息

College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.

出版信息

Nanophotonics. 2023 Jan 16;12(13):2425-2432. doi: 10.1515/nanoph-2022-0697. eCollection 2023 Jun.

Abstract

Optical phased array (OPA), as a promising beam steering technology, however, usually suffers from a narrow field of view (FOV) that limits its performances in applications. A miniaturized compact strategy to enlarge the beam steering angle is quite desirable for the solid-state OPA technique. Here an on-chip metasurface-doublet is proposed to offer angle magnification integrated with a port-selected optical phased array. It is implemented by combing convex and concave metalenses with the quadratic phase distribution, which is precisely integrated on the OPA chip by layer-by-layer fabrication process. Here, the OPA is fabricated in Lithium Niobate on Insulator (LNOI) platform. Our experiments show that the metasurface-doublet is able to achieve 1.54 times FOV amplification in a horizontal direction and with >41% working efficiency. Our results provide a feasible approach to achieve enlarged FOV for wide-angle beam steering and also imply a powerful platform in developing integrated multilayer metasurface devices.

摘要

然而,光学相控阵(OPA)作为一种很有前景的波束转向技术,通常存在视场(FOV)狭窄的问题,这限制了其在应用中的性能。对于固态OPA技术而言,一种用于扩大波束转向角度的小型化紧凑策略是非常可取的。本文提出了一种片上超表面双合透镜,以提供与端口选择光学相控阵集成的角度放大功能。它是通过将具有二次相位分布的凸面和凹面金属透镜相结合来实现的,该二次相位分布通过逐层制造工艺精确地集成在OPA芯片上。在此,OPA是在绝缘体上铌酸锂(LNOI)平台上制造的。我们的实验表明,超表面双合透镜能够在水平方向上实现1.54倍的视场放大,且工作效率大于41%。我们的结果为实现广角波束转向的扩大视场提供了一种可行的方法,也意味着在开发集成多层超表面器件方面有一个强大的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2727/11501765/09d6c1e1cadb/j_nanoph-2022-0697_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验