Suppr超能文献

利用光子分子实现二维异质结构的厚度不敏感纳米腔。

Thickness insensitive nanocavities for 2D heterostructures using photonic molecules.

作者信息

Ji Peirui, Qian Chenjiang, Finley Jonathan J, Yang Shuming

机构信息

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany.

出版信息

Nanophotonics. 2023 Jul 31;12(17):3501-3510. doi: 10.1515/nanoph-2023-0347. eCollection 2023 Aug.

Abstract

Two-dimensional (2D) heterostructures integrated into nanophotonic cavities have emerged as a promising approach towards novel photonic and opto-electronic devices. However, the thickness of the 2D heterostructure has a strong influence on the resonance frequency of the nanocavity. For a single cavity, the resonance frequency shifts approximately linearly with the thickness. Here, we propose to use the inherent non-linearity of the mode coupling to render the cavity mode insensitive to the thickness of the 2D heterostructure. Based on the coupled mode theory, we reveal that this goal can be achieved using either a homoatomic molecule with a filtered coupling or heteroatomic molecules. We perform numerical simulations to further demonstrate the robustness of the eigenfrequency in the proposed photonic molecules. Our results render nanophotonic structures insensitive to the thickness of 2D materials, thus owing appealing potential in energy- or detuning-sensitive applications such as cavity quantum electrodynamics.

摘要

集成到纳米光子腔中的二维(2D)异质结构已成为一种用于新型光子和光电器件的有前途的方法。然而,二维异质结构的厚度对纳米腔的共振频率有很大影响。对于单个腔,共振频率随厚度近似线性变化。在此,我们提议利用模式耦合的固有非线性使腔模式对二维异质结构的厚度不敏感。基于耦合模式理论,我们揭示了使用具有滤波耦合的同原子分子或异原子分子可以实现这一目标。我们进行数值模拟以进一步证明所提出的光子分子中本征频率的稳健性。我们的结果使纳米光子结构对二维材料的厚度不敏感,因此在诸如腔量子电动力学等对能量或失谐敏感的应用中具有诱人的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bbb/11501893/68bc0814442a/j_nanoph-2023-0347_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验