Suppr超能文献

等离子体近场驱动化学反应的超分辨率映射

Super-Resolution Mapping of a Chemical Reaction Driven by Plasmonic Near-Fields.

作者信息

Hamans Ruben F, Parente Matteo, Baldi Andrea

机构信息

Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands.

Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

出版信息

Nano Lett. 2021 Mar 10;21(5):2149-2155. doi: 10.1021/acs.nanolett.0c04837. Epub 2021 Feb 19.

Abstract

Plasmonic nanoparticles have recently emerged as promising photocatalysts for light-driven chemical conversions. Their illumination results in the generation of highly energetic charge carriers, elevated surface temperatures, and enhanced electromagnetic fields. Distinguishing between these often-overlapping processes is of paramount importance for the rational design of future plasmonic photocatalysts. However, the study of plasmon-driven chemical reactions is typically performed at the ensemble level and, therefore, is limited by the intrinsic heterogeneity of the catalysts. Here, we report an in situ single-particle study of a fluorogenic chemical reaction driven solely by plasmonic near-fields. Using super-resolution fluorescence microscopy, we map the position of individual product molecules with an ∼30 nm spatial resolution and demonstrate a clear correlation between the electric field distribution around individual nanoparticles and their super-resolved catalytic activity maps. Our results can be extended to systems with more complex electric field distributions, thereby guiding the design of future advanced photocatalysts.

摘要

等离子体纳米粒子最近已成为用于光驱动化学转化的有前景的光催化剂。它们受到光照会产生高能电荷载流子、提高表面温度并增强电磁场。区分这些经常重叠的过程对于未来等离子体光催化剂的合理设计至关重要。然而,等离子体驱动化学反应的研究通常是在整体水平上进行的,因此受到催化剂固有非均质性的限制。在这里,我们报告了一项仅由等离子体近场驱动的荧光化学反应的原位单粒子研究。使用超分辨率荧光显微镜,我们以约30纳米的空间分辨率绘制单个产物分子的位置,并证明单个纳米粒子周围的电场分布与其超分辨催化活性图之间存在明显的相关性。我们的结果可以扩展到具有更复杂电场分布的系统,从而指导未来先进光催化剂的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c587/8023696/ac5b5571e748/nl0c04837_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验