Suppr超能文献

基于阵列波导光栅的用于光学神经网络的无冗余集成光学卷积器。

Redundancy-free integrated optical convolver for optical neural networks based on arrayed waveguide grating.

作者信息

Zhang Shiji, Zhou Haojun, Wu Bo, Jiang Xueyi, Gao Dingshan, Xu Jing, Dong Jianji

机构信息

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

Optics Valley Laboratory, Wuhan 430074, China.

出版信息

Nanophotonics. 2024 Jan 2;13(1):19-28. doi: 10.1515/nanoph-2023-0513. eCollection 2024 Jan.

Abstract

Optical neural networks (ONNs) have gained significant attention due to their potential for high-speed and energy-efficient computation in artificial intelligence. The implementation of optical convolutions plays a vital role in ONNs, as they are fundamental operations within neural network architectures. However, state-of-the-art convolution architectures often suffer from redundant inputs, leading to substantial resource waste. Here, we demonstrate an integrated optical convolution architecture that leverages the inherent routing principles of arrayed waveguide grating (AWG) to execute the sliding of convolution kernel and summation of results. × multiply-accumulate (MAC) operations are facilitated by + units within a single clock cycle, thus eliminating the redundancy. In the experiment, we achieved 5 bit precision and 91.9 % accuracy in the handwritten digit recognition task confirming the reliability of our approach. Its redundancy-free architecture, low power consumption, high compute density (8.53 teraOP mm s) and scalability make it a valuable contribution to the field of optical neural networks, thereby paving the way for future advancements in high-performance computing and artificial intelligence applications.

摘要

光学神经网络(ONNs)因其在人工智能中具有高速和节能计算的潜力而备受关注。光学卷积的实现对光学神经网络起着至关重要的作用,因为它们是神经网络架构中的基本操作。然而,当前最先进的卷积架构常常存在冗余输入,导致大量资源浪费。在此,我们展示了一种集成光学卷积架构,该架构利用阵列波导光栅(AWG)的固有路由原理来执行卷积核的滑动和结果求和。乘法累加(MAC)操作在单个时钟周期内由加法单元完成,从而消除了冗余。在实验中,我们在手写数字识别任务中实现了5位精度和91.9%的准确率,证实了我们方法的可靠性。其无冗余架构、低功耗、高计算密度(8.53万亿次运算/毫米·秒)和可扩展性使其成为光学神经网络领域的一项重要贡献,从而为高性能计算和人工智能应用的未来发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1179/11501253/ffa1f1a5974b/j_nanoph-2023-0513_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验