Suppr超能文献

通过无损模式分割扇入实现的高效光子卷积器。

Highly efficient photonic convolver via lossless mode-division fan-in.

作者信息

Sun Shangsen, Zhang Shiji, Wu Bo, Jiang Shan, Zhao Baiheng, Zhou Hailong, Dong Jianji, Zhang Xinliang

机构信息

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Optics Valley Laboratory, 430074, Wuhan, China.

出版信息

Nat Commun. 2025 Aug 13;16(1):7513. doi: 10.1038/s41467-025-62954-w.

Abstract

Optical neural networks (ONNs) leverage the parallelism and low-energy consumption of photonic signal processing to overcome the limitations of traditional electronic computing. Optics inherently enables fan-in and fan-out without the Resistor-Capacitor (RC) and Inductor-Capacitor (LC) delays of electrical interconnects. However, for single-mode photonic integrated circuits, reciprocity constraints introduce unavoidable loss during beam combining, hindering large-scale on-chip photonic fan-in. To overcome this challenge, we provide a photonic lossless mode-division fan-in solution for the convolution accelerators. Using inverse design, we developed a compact multimode photonic convolution accelerator (0.42 mm) with ±15 nm fabrication tolerance and 35 nm optical bandwidth, enabling parallel computation across mode and wavelength dimensions. Experimental results in the C-band confirm a 6-7 bit convolution precision, leading to classification accuracies of 95.2% on MNIST and 87.9% on Fashion-MNIST. Moreover, the device offers a theoretical computational density of 125.14 TOPS/mm, underscoring its potential for scalable and energy-efficient photonic computing accelerators.

摘要

光学神经网络(ONNs)利用光子信号处理的并行性和低能耗来克服传统电子计算的局限性。光学本质上能够实现扇入和扇出,而不存在电气互连的电阻 - 电容(RC)和电感 - 电容(LC)延迟。然而,对于单模光子集成电路,互易性约束在光束合并过程中引入了不可避免的损耗,阻碍了大规模片上光子扇入。为了克服这一挑战,我们为卷积加速器提供了一种光子无损模式分割扇入解决方案。通过逆向设计,我们开发了一种紧凑的多模光子卷积加速器(0.42毫米),具有±15纳米的制造公差和35纳米的光学带宽,能够在模式和波长维度上进行并行计算。在C波段的实验结果证实了6 - 7位的卷积精度,在MNIST上的分类准确率达到95.2%,在Fashion - MNIST上达到87.9%。此外,该器件的理论计算密度为125.14 TOPS/mm,突出了其在可扩展和节能光子计算加速器方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d66/12350799/3b580d3622ba/41467_2025_62954_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验