Suppr超能文献

利用数据挖掘算法对影响豌豆(L.)鲜草产量的因素进行调查。

Investigation of factors affecting fresh herbage yield in pea ( L.) using data mining algorithms.

作者信息

Çatal Muhammed İkbal, Çelik Şenol, Bakoğlu Adil

机构信息

Department of Field Crops, Faculty of Agriculture, University of Recep Tayyip Erdogan, Rize, Türkiye.

Biometry Genetics Unit, Department of Animal Science, Faculty of Agriculture, University of Bingöl, Bingöl, Türkiye.

出版信息

Front Plant Sci. 2024 Nov 20;15:1482723. doi: 10.3389/fpls.2024.1482723. eCollection 2024.

Abstract

This study was carried out to determine the factors affecting the wet grass yield of pea plants grown in Turkey. Wet grass yield was predicted using parameters such as genotype, crude protein, crude ash, acid detergent fiber (ADF), and neutral detergent fiber (NDF) with some data mining algorithms. These techniques provided easily interpretable data trees and precise cutoff values. This led to a comparison of the predictive abilities of data mining methods, including multivariate adaptive regression spline (MARS), Chi-square automatic interaction detection (CHAID), classification and regression tree (CART), and artificial neural network (ANN). To test the compatibility of the data mining algorithms, seven goodness-of-fit criteria were used. The predictive abilities of the fitted models were assessed using model fit statistics such as the coefficient of determination ( ), adjusted , root mean square error (RMSE), mean absolute percentage error (MAPE), standard deviation ratio (SD ratio), Akaike information criterion (AIC), and corrected Akaike information criterion (AICc). With the greatest and adjusted values (0.998 and 0.986) and the lowest values of RMSE, MAPE, SD ratio, AIC, and AICc (10.499, 0.7365, 0.047, 268, and 688, respectively), the MARS method was determined to be the best model for quantifying plant fresh herbage yield. In estimating the fresh herbage production of the pea plant, the results showed that the MARS method was the most appropriate model and a good substitute for other data mining techniques.

摘要

本研究旨在确定影响土耳其种植的豌豆植株湿草产量的因素。利用基因型、粗蛋白、粗灰分、酸性洗涤纤维(ADF)和中性洗涤纤维(NDF)等参数,通过一些数据挖掘算法预测湿草产量。这些技术提供了易于解释的数据树和精确的临界值。这导致了对包括多元自适应回归样条(MARS)、卡方自动交互检测(CHAID)、分类与回归树(CART)和人工神经网络(ANN)在内的数据挖掘方法预测能力的比较。为了测试数据挖掘算法的兼容性,使用了七个拟合优度标准。使用决定系数( )、调整后的 、均方根误差(RMSE)、平均绝对百分比误差(MAPE)、标准差比(SD比)、赤池信息准则(AIC)和校正赤池信息准则(AICc)等模型拟合统计量评估拟合模型的预测能力。MARS方法具有最大的 和调整后的 值(分别为0.998和0.986)以及最低的RMSE、MAPE、SD比、AIC和AICc值(分别为10.499、0.7365、0.047、268和688),被确定为量化植物鲜草产量的最佳模型。在估计豌豆植株的鲜草产量时,结果表明MARS方法是最合适的模型,并且是其他数据挖掘技术的良好替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfb6/11614625/cb181069c95b/fpls-15-1482723-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验