Miguel-Torcal Alberto, Abad-Arredondo Jaime, García-Vidal Francisco J, Fernández-Domínguez Antonio I
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 138632 Connexis, Singapore.
Nanophotonics. 2022 Aug 22;11(19):4387-4395. doi: 10.1515/nanoph-2022-0231. eCollection 2022 Sep.
We investigate the generation of entanglement between two quantum emitters through the inverse-design engineering of their photonic environment. By means of a topology-optimization approach acting at the level of the electromagnetic Dyadic Green's function, we generate dielectric cloaks operating at different inter-emitter distances and incoherent pumping strengths. We show that the structures obtained maximize the dissipative coupling between the emitters under extremely different Purcell factor conditions, and yield steady-state concurrence values much larger than those attainable in free space. Finally, we benchmark our design strategy by proving that the entanglement enabled by our devices approaches the limit of maximum-entangled-mixed-states.
我们通过对两个量子发射器的光子环境进行逆向设计工程,研究它们之间纠缠的产生。借助一种作用于电磁并矢格林函数层面的拓扑优化方法,我们生成了在不同发射器间距和非相干泵浦强度下工作的介电隐身衣。我们表明,所获得的结构在极其不同的珀塞尔因子条件下使发射器之间的耗散耦合最大化,并产生比自由空间中所能达到的稳态并发值大得多的稳态并发值。最后,我们通过证明我们的器件所实现的纠缠接近最大纠缠混合态的极限,来对我们的设计策略进行基准测试。