Suppr超能文献

单层二硫化钼在纳米结构硅波导上的直接生长。

Direct growth of monolayer MoS on nanostructured silicon waveguides.

作者信息

Kuppadakkath Athira, Najafidehaghani Emad, Gan Ziyang, Tuniz Alessandro, Ngo Gia Quyet, Knopf Heiko, Löchner Franz J F, Abtahi Fatemeh, Bucher Tobias, Shradha Sai, Käsebier Thomas, Palomba Stefano, Felde Nadja, Paul Pallabi, Ullsperger Tobias, Schröder Sven, Szeghalmi Adriana, Pertsch Thomas, Staude Isabelle, Zeitner Uwe, George Antony, Turchanin Andrey, Eilenberger Falk

机构信息

Friedrich Schiller University, Institute of Applied Physics, Abbe Center of Photonics, Albert-Einstein-Str. 15, 07745 Jena, Germany.

Friedrich Schiller University, Institute of Physical Chemistry, Jena, Germany.

出版信息

Nanophotonics. 2022 Aug 22;11(19):4397-4408. doi: 10.1515/nanoph-2022-0235. eCollection 2022 Sep.

Abstract

We report for the first time the direct growth of molybdenum disulfide (MoS) monolayers on nanostructured silicon-on-insulator waveguides. Our results indicate the possibility of utilizing the Chemical Vapour Deposition (CVD) on nanostructured photonic devices in a scalable process. Direct growth of 2D material on nanostructures rectifies many drawbacks of the transfer-based approaches. We show that the van der Waals material grow conformally across the curves, edges, and the silicon-SiO interface of the waveguide structure. Here, the waveguide structure used as a growth substrate is complex not just in terms of its geometry but also due to the two materials (Si and SiO) involved. A transfer-free method like this yields a novel approach for functionalizing nanostructured, integrated optical architectures with an optically active direct semiconductor.

摘要

我们首次报道了二硫化钼(MoS)单层在纳米结构绝缘体上硅波导上的直接生长。我们的结果表明了在可扩展工艺中利用纳米结构光子器件上的化学气相沉积(CVD)的可能性。二维材料在纳米结构上的直接生长纠正了基于转移方法的许多缺点。我们表明,范德华材料在波导结构的曲线、边缘和硅 - 二氧化硅界面上共形生长。在这里,用作生长衬底的波导结构不仅在几何形状方面复杂,而且还由于涉及两种材料(硅和二氧化硅)。这样一种无转移方法为用光学活性直接半导体对纳米结构集成光学架构进行功能化提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b016/11501977/7909f7a760a5/j_nanoph-2022-0235_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验