Suppr超能文献

基于PANoptosis识别预测急性髓系白血病预后和免疫治疗反应的特征。

Identification of PANoptosis-based signature for predicting the prognosis and immunotherapy response in AML.

作者信息

Zhang Lu, Yu Yanan, Li Guiqing, Li Jiachun, Ma Xiaolin, Ren Jiao, Liu Na, Guo Songyue, Li Jiaqiu, Cai Jinwei

机构信息

Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China.

Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China.

出版信息

Heliyon. 2024 Nov 8;10(22):e40267. doi: 10.1016/j.heliyon.2024.e40267. eCollection 2024 Nov 30.

Abstract

BACKGROUND

In recent years, the incidence of acute myeloid leukemia (AML) has increased rapidly with a suboptimal prognosis. In AML, cell death is independent of tumorigenesis, tumor invasion, and drug resistance. PANoptosis is a newly discovered form of cell death that combines pyroptosis, apoptosis, and necroptosis. However, no studies have explored the role of PANoptosis-based signatures in AML.

METHODS

We screened for PANoptosis-related genes and established a PANoptosis-risk signature using the least absolute shrinkage and selection operator (LASSO) and Cox regression analysis. We combined TCGA, bulk RNA sequencing, and single-cell sequencing to investigate the correlation between candidate genes and the AML tumor microenvironment.

RESULTS

The PANoptosis risk signature effectively predicted prognosis with good sensitivity and specificity. The risk score emerged as an independent prognostic factor. Functional enrichment analysis of PANoptosis-related differentially expressed genes suggested that the risk score may be related to cell immunity. Patients with high-risk scores exhibited increased immune cell infiltration, implying a hot tumor immune microenvironment. The risk score was positively correlated with the immune scores and expression levels of immune checkpoints. Therefore, we identified three model factors, BIRC3, PELI1, and PRKACG, as predictors for immunotherapy efficacy. Single-cell sequencing analysis demonstrated that PELI1 and BIRC3 may participate in the regulation of the AML immune microenvironment. Finally, we performed a drug sensitivity analysis to target BIRC3 and PELI1 using molecular docking and molecular dynamics simulations.

CONCLUSION

Our study established and verified a PANoptosis risk signature to predict the survival and immunological treatment response in AML.

摘要

背景

近年来,急性髓系白血病(AML)的发病率迅速上升,预后欠佳。在AML中,细胞死亡独立于肿瘤发生、肿瘤侵袭和耐药性。PAN凋亡是一种新发现的细胞死亡形式,它结合了细胞焦亡、凋亡和坏死性凋亡。然而,尚无研究探讨基于PAN凋亡的特征在AML中的作用。

方法

我们筛选了与PAN凋亡相关的基因,并使用最小绝对收缩和选择算子(LASSO)及Cox回归分析建立了一个PAN凋亡风险特征。我们结合TCGA、批量RNA测序和单细胞测序来研究候选基因与AML肿瘤微环境之间的相关性。

结果

PAN凋亡风险特征能有效预测预后,具有良好的敏感性和特异性。风险评分成为一个独立的预后因素。对与PAN凋亡相关的差异表达基因进行功能富集分析表明,风险评分可能与细胞免疫有关。高风险评分的患者免疫细胞浸润增加,这意味着肿瘤免疫微环境呈“热”状态。风险评分与免疫评分及免疫检查点的表达水平呈正相关。因此,我们确定了三个模型因素,即BIRC3、PELI1和PRKACG,作为免疫治疗疗效的预测指标。单细胞测序分析表明,PELI1和BIRC3可能参与AML免疫微环境的调节。最后,我们使用分子对接和分子动力学模拟对靶向BIRC3和PELI1进行了药物敏感性分析。

结论

我们的研究建立并验证了一个PAN凋亡风险特征,以预测AML患者的生存情况和免疫治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be60/11616514/c93b31b150e2/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验