Yang Dongni, Zhang Jianchao, Zhang Pengshuai, Liang Haowen, Ma Jie, Li Juntao, Wang Xue-Hua
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.
Hisense Laser Display Co., Ltd., Qingdao, China.
Nanophotonics. 2024 Apr 15;13(15):2781-2789. doi: 10.1515/nanoph-2023-0850. eCollection 2024 Jul.
Trapping and manipulating micro-objects and achieving high-precision measurements of tiny forces and displacements are of paramount importance in both physical and biological research. While conventional optical tweezers rely on tightly focused beams generated by bulky microscope systems, the emergence of flat lenses, particularly metalenses, has revolutionized miniature optical tweezers applications. In contrast to traditional objectives, the metalenses can be seamlessly integrated into sample chambers, facilitating flat-optics-based light manipulation. In this study, we propose an experimentally realized transmissive and polarization-insensitive water-immersion metalens, constructed using adaptive nano-antennas. This metalens boasts an ultra-high numerical aperture of 1.28 and achieves a remarkable focusing efficiency of approximately 50 % at a wavelength of 532 nm. Employing this metalens, we successfully demonstrate stable optical trapping, achieving lateral trapping stiffness exceeding 500 pN/(μm W). This stiffness magnitude aligns with that of conventional objectives and surpasses the performance of previously reported flat lenses. Furthermore, our bead steering experiment showcases a lateral manipulation range exceeding 2 μm, including a region of around 0.5 μm exhibiting minimal changes in stiffness for smoothly optical manipulation. We believe that this metalens paves the way for flat-optics-based optical tweezers, simplifying and enhancing optical trapping and manipulation processes, attributing ease of use, reliability, high performance, and compatibility with prevalent optical tweezers applications, including single-molecule and single-cell experiments.
捕获和操纵微观物体以及实现微小力和位移的高精度测量在物理和生物学研究中都至关重要。传统的光镊依赖于大型显微镜系统产生的紧密聚焦光束,而平面透镜,特别是超构透镜的出现,彻底改变了微型光镊的应用。与传统物镜不同,超构透镜可以无缝集成到样品池中,便于基于平面光学的光操纵。在本研究中,我们提出了一种通过实验实现的透射式且对偏振不敏感的水浸超构透镜,它是使用自适应纳米天线构建的。这种超构透镜拥有1.28的超高数值孔径,在532nm波长下实现了约50%的显著聚焦效率。使用这种超构透镜,我们成功展示了稳定的光捕获,实现了超过500 pN/(μm W)的横向捕获刚度。这个刚度量级与传统物镜相当,并且超过了先前报道的平面透镜的性能。此外,我们的微珠操控实验展示了超过2μm的横向操控范围,包括一个约0.5μm的区域,在该区域刚度变化最小,便于进行平滑的光操纵。我们相信,这种超构透镜为基于平面光学的光镊铺平了道路,简化并增强了光捕获和操纵过程,具有易用性、可靠性、高性能以及与包括单分子和单细胞实验在内的普遍光镊应用的兼容性。