Taylor Peter N, Wang Yujiang, Simpson Callum, Janiukstyte Vytene, Horsley Jonathan, Leiberg Karoline, Little Beth, Clifford Harry, Adler Sophie, Vos Sjoerd B, Winston Gavin P, McEvoy Andrew W, Miserocchi Anna, de Tisi Jane, Duncan John S
CNNP Lab (www.cnnp-lab.com/ideas-data), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
Epilepsia. 2025 Feb;66(2):471-481. doi: 10.1111/epi.18192. Epub 2024 Dec 5.
Magnetic resonance imaging (MRI) is a crucial tool for identifying brain abnormalities in a wide range of neurological disorders. In focal epilepsy, MRI is used to identify structural cerebral abnormalities. For covert lesions, machine learning and artificial intelligence (AI) algorithms may improve lesion detection if abnormalities are not evident on visual inspection. The success of this approach depends on the volume and quality of training data.
Herein, we release an open-source data set of pre-processed MRI scans from 442 individuals with drug-refractory focal epilepsy who had neurosurgical resections and detailed demographic information. We also share scans from 100 healthy controls acquired on the same scanners. The MRI scan data include the preoperative three-dimensional (3D) T1 and, where available, 3D fluid-attenuated inversion recovery (FLAIR), as well as a manually inspected complete surface reconstruction and volumetric parcellations. Demographic information includes age, sex, age a onset of epilepsy, location of surgery, histopathology of resected specimen, occurrence and frequency of focal seizures with and without impairment of awareness, focal to bilateral tonic-clonic seizures, number of anti-seizure medications (ASMs) at time of surgery, and a total of 1764 patient years of post-surgical followup. Crucially, we also include resection masks delineated from post-surgical imaging.
To demonstrate the veracity of our data, we successfully replicated previous studies showing long-term outcomes of seizure freedom in the range of ~50%. Our imaging data replicate findings of group-level atrophy in patients compared to controls. Resection locations in the cohort were predominantly in the temporal and frontal lobes.
We envisage that our data set, shared openly with the community, will catalyze the development and application of computational methods in clinical neurology.
磁共振成像(MRI)是识别多种神经系统疾病中脑异常的关键工具。在局灶性癫痫中,MRI用于识别脑部结构异常。对于隐匿性病变,如果视觉检查未发现明显异常,机器学习和人工智能(AI)算法可能会改善病变检测。这种方法的成功取决于训练数据的数量和质量。
在此,我们发布了一个开源数据集,该数据集来自442例接受神经外科手术切除且有详细人口统计学信息的药物难治性局灶性癫痫患者的预处理MRI扫描。我们还分享了在同一台扫描仪上采集的100名健康对照者的扫描数据。MRI扫描数据包括术前三维(3D)T1加权像,以及(如有)3D液体衰减反转恢复(FLAIR)像,还有经过人工检查的完整表面重建和体积分割。人口统计学信息包括年龄、性别、癫痫发病年龄、手术部位、切除标本的组织病理学、有无意识障碍的局灶性发作的发生情况和频率、从局灶性发作发展为双侧强直阵挛性发作的情况、手术时抗癫痫药物(ASM)的数量,以及总共1764个患者年的术后随访。至关重要的是,我们还包括从术后成像中勾勒出的切除掩码。
为了证明我们数据的准确性,我们成功复制了先前的研究,显示癫痫发作自由的长期结果在约50%的范围内。我们的成像数据复制了与对照组相比患者组水平萎缩的研究结果。该队列中的切除部位主要在颞叶和额叶。
我们设想,我们与社区公开共享的数据集将促进临床神经学中计算方法的开发和应用。