Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
J Neurol Neurosurg Psychiatry. 2022 Jun;93(6):599-608. doi: 10.1136/jnnp-2021-328185. Epub 2022 Mar 28.
We sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome.
151 subjects were included in this analysis: 62 patients (aged 18-68 years, 36 women) and 89 healthy controls (aged 18-71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation.
We classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome.
This technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder.
我们旨在通过创建一种使用弥散加权成像对特定患者的癫痫起始侧和手术结果进行分类的监督机器学习技术,来增强药物难治性颞叶癫痫的术前评估。
本分析共纳入 151 例受试者:62 例患者(年龄 18-68 岁,36 名女性)和 89 例健康对照者(年龄 18-71 岁,47 名女性)。我们创建了一种使用弥散加权指标对受试者进行分类的监督机器学习技术。具体而言,我们试图对患者与健康对照者、单侧颞叶癫痫与双侧颞叶癫痫、左侧颞叶癫痫与右侧颞叶癫痫以及手术结果无发作与有发作进行分类。然后,我们通过社区检测来降低导出特征的维度,以方便解释。
我们在保留测试数据集中对受试者组进行分类,在交叉验证平均测试中,患者与健康对照者的受试者工作特征曲线下面积为 0.745,单侧与双侧起始癫痫发作的面积为 1.000,左侧与右侧起始癫痫发作的面积为 0.662,左侧无发作与有发作手术结果的面积为 0.800,右侧无发作与有发作手术结果的面积为 0.775。
该技术通过生成辨别白质特征,对颞叶癫痫术前评估中的重要临床决策进行分类。我们认为,通过进一步阐明颞叶癫痫中重要的白质病理学,这项工作补充了该领域现有的网络连通性研究结果。我们希望这项工作有助于最近使用弥散成像作为这种破坏性神经障碍术前评估的补充的努力。