Suppr超能文献

基于深度学习的预测模型筛选抗肿瘤坏死因子-α的天然化合物用于类风湿关节炎的潜在治疗:从虚拟筛选到全面的计算机模拟研究

Deep learning based predictive modeling to screen natural compounds against TNF-alpha for the potential management of rheumatoid arthritis: Virtual screening to comprehensive in silico investigation.

作者信息

Nabi Tasnia, Riyed Tanver Hasan, Ornob Akid

机构信息

Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh.

出版信息

PLoS One. 2024 Dec 5;19(12):e0303954. doi: 10.1371/journal.pone.0303954. eCollection 2024.

Abstract

Rheumatoid arthritis (RA) affects an estimated 0.1% to 2.0% of the world's population, leading to a substantial impact on global health. The adverse effects and toxicity associated with conventional RA treatment pathways underscore the critical need to seek potential new therapeutic candidates, particularly those of natural sources that can treat the condition with minimal side effects. To address this challenge, this study employed a deep-learning (DL) based approach to conduct a virtual assessment of natural compounds against the Tumor Necrosis Factor-alpha (TNF-α) protein. TNF-α stands out as the primary pro-inflammatory cytokine, crucial in the development of RA. Our predictive model demonstrated appreciable performance, achieving MSE of 0.6, MAPE of 10%, and MAE of 0.5. The model was then deployed to screen a comprehensive set of 2563 natural compounds obtained from the Selleckchem database. Utilizing their predicted bioactivity (pIC50), the top 128 compounds were identified. Among them, 68 compounds were taken for further analysis based on drug-likeness analysis. Subsequently, selected compounds underwent additional evaluation using molecular docking (< - 8.7 kcal/mol) and ADMET resulting in four compounds posing nominal toxicity, which were finally subjected to MD simulation for 200 ns. Later on, the stability of complexes was assessed via analysis encompassing RMSD, RMSF, Rg, H-Bonds, SASA, and Essential Dynamics. Ultimately, based on the total binding free energy estimated using the MM/GBSA method, Imperialine, Veratramine, and Gelsemine are proven to be potential natural inhibitors of TNF-α.

摘要

类风湿性关节炎(RA)影响着全球约0.1%至2.0%的人口,对全球健康产生了重大影响。传统RA治疗途径所带来的不良反应和毒性凸显了寻找潜在新治疗候选物的迫切需求,特别是那些副作用最小的天然来源的候选物。为应对这一挑战,本研究采用基于深度学习(DL)的方法对天然化合物针对肿瘤坏死因子-α(TNF-α)蛋白进行虚拟评估。TNF-α是主要的促炎细胞因子,在RA的发展中起关键作用。我们的预测模型表现出可观的性能,均方误差(MSE)为0.6,平均绝对百分比误差(MAPE)为10%,平均绝对误差(MAE)为0.5。然后,该模型被用于筛选从Selleckchem数据库中获取的一组全面的2563种天然化合物。利用它们预测的生物活性(pIC50),确定了前128种化合物。其中,基于类药性分析,选取了68种化合物进行进一步分析。随后,对选定的化合物使用分子对接(< - 8.7千卡/摩尔)和药物代谢及毒性预测(ADMET)进行额外评估,结果得到四种具有标称毒性的化合物,最终对其进行了200纳秒的分子动力学(MD)模拟。之后,通过包括均方根偏差(RMSD)、均方根波动(RMSF)、回旋半径(Rg)、氢键、溶剂可及表面积(SASA)和主成分动力学等分析来评估复合物的稳定性。最终,基于使用MM/GBSA方法估计的总结合自由能,证明贝母碱、藜芦胺和钩吻素是TNF-α的潜在天然抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6dd/11620472/d694410e9bcf/pone.0303954.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验