Suppr超能文献

比较可穿戴机器人辅助步态训练对功能变化和神经可塑性的影响:一项初步研究。

Comparing effects of wearable robot-assisted gait training on functional changes and neuroplasticity: A preliminary study.

作者信息

Lee Jungsoo, Kunanbayev Kassymzhomart, Jang Donggon, Kim Dae-Shik

机构信息

Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.

School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

出版信息

PLoS One. 2024 Dec 5;19(12):e0315145. doi: 10.1371/journal.pone.0315145. eCollection 2024.

Abstract

Robot-assisted gait training (RAGT) is a promising technique for improving the gait ability of elderly adults and patients with gait disorders by enabling high-intensive and task-specific training. Gait functions involve multiple brain regions and networks. Therefore, RAGT is expected to affect not just gait performance but also neuroplasticity and cognitive ability. The purpose of this preliminary study was to verify the feasibility of the proposed RAGT design and to assess and compare the effect sizes of various measurement variables, including physical, cognitive, and neuroimaging induced by RAGT. Twelve healthy adults without any neurological or musculoskeletal disorders participated in this study. All participants wore a wearable exoskeleton robot and underwent 10 RAGT sessions. Functional data related to physical and cognitive abilities and neuroimaging data obtained from a magnetic resonance imaging (MRI) scanner and a functional near-infrared spectroscopy (fNIRS) device were acquired before and after the training sessions to assess the effect sizes of variables affected by RAGT. All participants underwent 10 sessions of RAGT without any adverse incidents, and the feasibility of the proposed RAGT design, consisting of preferred speed walking, fast speed walking, inclined walking, and squats, was validated. Variables related to physical and cognitive abilities significantly improved, but those related to neuroplasticity did not. The effect size of physical ability was "very large," whereas that of cognitive ability was "medium-to-large." The effect sizes of functional and structural neuroplasticity showed "medium" and "very small," respectively. The effect size of the RAGT varied depending on the measured variables, with the effect size being the greatest for physical ability, followed by cognitive ability, functional neuroplasticity, and structural neuroplasticity. The proposed RAGT design affects cognitive and neuroplastic effects beyond the physical effect directly affected by RAGT. This study highlights that while RAGT can positively influence cognitive outcomes beyond physical benefits, more intensive interventions may be required to elicit significant neuroplastic changes. This preliminary study offers useful information for researchers interested in designing robot-assisted training by investigating the potential extent of neuroplastic effects. Trial registration: KCT0006738.

摘要

机器人辅助步态训练(RAGT)是一种很有前景的技术,通过进行高强度和特定任务训练,可提高老年人及步态障碍患者的步态能力。步态功能涉及多个脑区和神经网络。因此,RAGT不仅有望影响步态表现,还能影响神经可塑性和认知能力。这项初步研究的目的是验证所提出的RAGT设计的可行性,并评估和比较各种测量变量的效应大小,这些变量包括由RAGT引起的身体、认知和神经影像学方面的变量。12名无任何神经或肌肉骨骼疾病的健康成年人参与了本研究。所有参与者均穿戴可穿戴外骨骼机器人,并接受了10次RAGT训练。在训练前后采集了与身体和认知能力相关的功能数据,以及从磁共振成像(MRI)扫描仪和功能近红外光谱(fNIRS)设备获得的神经影像学数据,以评估受RAGT影响的变量的效应大小。所有参与者均接受了10次RAGT训练,未发生任何不良事件,由首选速度行走、快速行走、斜坡行走和下蹲组成的所提出的RAGT设计的可行性得到了验证。与身体和认知能力相关的变量显著改善,但与神经可塑性相关的变量未改善。身体能力的效应大小为“非常大”,而认知能力的效应大小为“中到大”。功能和结构神经可塑性的效应大小分别为“中等”和“非常小”。RAGT的效应大小因测量变量而异,其中身体能力的效应大小最大,其次是认知能力、功能神经可塑性和结构神经可塑性。所提出的RAGT设计除了对RAGT直接影响的身体效应外,还会影响认知和神经可塑性效应。这项研究强调,虽然RAGT除了身体益处外还能对认知结果产生积极影响,但可能需要更密集的干预才能引发显著的神经可塑性变化。这项初步研究通过调查神经可塑性效应的潜在程度,为有兴趣设计机器人辅助训练的研究人员提供了有用信息。试验注册:KCT0006738。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13ea/11620557/c2f4bed49890/pone.0315145.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验