Suppr超能文献

共组装苝/氧化石墨烯光敏异质双层结构用于高效神经形态学。

Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics.

机构信息

Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.

Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250100, China.

出版信息

Nat Commun. 2022 Aug 25;13(1):4996. doi: 10.1038/s41467-022-32725-y.

Abstract

Neuromorphic electronics, which use artificial photosensitive synapses, can emulate biological nervous systems with in-memory sensing and computing abilities. Benefiting from multiple intra/interactions and strong light-matter coupling, two-dimensional heterostructures are promising synaptic materials for photonic synapses. Two primary strategies, including chemical vapor deposition and physical stacking, have been developed for layered heterostructures, but large-scale growth control over wet-chemical synthesis with comprehensive efficiency remains elusive. Here we demonstrate an interfacial coassembly heterobilayer films from perylene and graphene oxide (GO) precursors, which are spontaneously formed at the interface, with uniform bilayer structure of single-crystal perylene and well-stacked GO over centimeters in size. The planar heterostructure device exhibits an ultrahigh specific detectivity of 3.1 × 10 Jones and ultralow energy consumption of 10 W as well as broadband photoperception from 365 to 1550 nm. Moreover, the device shows outstanding photonic synaptic behaviors with a paired-pulse facilitation (PPF) index of 214% in neuroplasticity, the heterosynapse array has the capability of information reinforcement learning and recognition.

摘要

神经形态电子学使用人工光敏突触,可以通过内存感应和计算能力模拟生物神经系统。得益于多种内/相互作用和强的光物质耦合,二维异质结构是光子突触有前途的突触材料。已经开发出两种主要的策略,包括化学气相沉积和物理堆叠,用于层状异质结构,但对于具有综合效率的湿化学合成的大规模生长控制仍然难以实现。在这里,我们展示了一种由苝和氧化石墨烯 (GO) 前体自组装形成的界面共组装异质双层薄膜,该薄膜在界面上自发形成,具有单晶苝的均匀双层结构和厘米级的堆叠良好的 GO。平面异质结构器件表现出超高的特定探测率为 3.1×10 琼斯和超低的能耗为 10 W 以及从 365 到 1550 nm 的宽带光感知。此外,该器件表现出出色的光子突触行为,神经可塑性中的成对脉冲促进 (PPF) 指数为 214%,异突触阵列具有信息强化学习和识别的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a373/9411554/17e448de8ccd/41467_2022_32725_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验