Suppr超能文献

层间滑动声子驱动Ph-BTBT-10有机半导体中的相变。

Interlayer Sliding Phonon Drives Phase Transition in the Ph-BTBT-10 Organic Semiconductor.

作者信息

Ferrari Elena, Pandolfi Lorenzo, Schweicher Guillaume, Geerts Yves, Salzillo Tommaso, Masino Matteo, Venuti Elisabetta

机构信息

Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale & INSTM-UdR Parma, Parco Area delle Scienze, 17/A, Parma 43124, Italy.

IMEM-CNR, Parco Area delle Scienze, 37/A, Parma 43124, Italy.

出版信息

Chem Mater. 2023 Jul 20;35(15):5777-5783. doi: 10.1021/acs.chemmater.3c00209. eCollection 2023 Aug 8.

Abstract

In the field of organic electronics, the semiconductor 7-decyl-2-phenyl[1]benzothieno[3,2-][1]benzothiophene (Ph-BTBT-10) has become a benchmark due to its high charge mobility and chemical stability in thin film devices. Its phase diagram is characterized by a crystal phase with a bilayer structure that at high temperature transforms into a Smectic E liquid crystal with monolayer structure. As the charge transport properties appear to depend on the phase present in the thin film, the transition has been the subject of structural and computational studies. Here such a process has been investigated by polarized low frequency Raman spectroscopy, selectively probing the intermolecular dynamics of the two phases. The spectroscopic observations demonstrate the key role played by a displacive component of the transition, with the interpenetration of the crystal bilayers driven by lattice phonon mode softening followed by the intralayer rearrangement of the molecule rigid cores into the herringbone motif of the liquid crystal. The mechanism can be related to the effectiveness of thermal annealing to restore the crystal phase in films.

摘要

在有机电子领域,半导体7-癸基-2-苯基[1]苯并噻吩并[3,2 -][1]苯并噻吩(Ph-BTBT-10)因其在薄膜器件中具有高电荷迁移率和化学稳定性而成为一个基准。其相图的特征是具有双层结构的晶相,该晶相在高温下转变为具有单层结构的近晶E液晶。由于电荷传输特性似乎取决于薄膜中存在的相,因此该转变一直是结构和计算研究的主题。在此,通过偏振低频拉曼光谱研究了这样一个过程,选择性地探测了两个相的分子间动力学。光谱观测结果表明了转变的一个位移分量所起的关键作用,晶体双层的相互渗透由晶格声子模式软化驱动,随后分子刚性核在层内重排为液晶的人字形图案。该机制可能与热退火恢复薄膜中晶相的有效性有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e3d/10413852/9b78212a3159/cm3c00209_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验