Suppr超能文献

使用随机森林分类算法对单中心择期修复腹主动脉瘤后两年生存率的预测

Prediction of Two Year Survival Following Elective Repair of Abdominal Aortic Aneurysms at A Single Centre Using A Random Forest Classification Algorithm.

作者信息

Thompson Daniel C, Hackett Rhiannon, Wong Peng F, Danjoux Gerard, Mofidi Reza

机构信息

Department of Vascular Surgery, James Cook University Hospital, Middlesbrough, UK.

Department of Perioperative Medicine, James Cook University Hospital, Middlesbrough, UK.

出版信息

Eur J Vasc Endovasc Surg. 2025 Apr;69(4):590-598. doi: 10.1016/j.ejvs.2024.11.357. Epub 2024 Dec 9.

Abstract

OBJECTIVE

The decision to electively repair an abdominal aortic aneurysm (AAA) involves balancing the risk of rupture, peri-procedural death, and life expectancy. Random forest classifiers (RFCs) are powerful machine learning algorithms. The aim of this study was to construct and validate a random forest machine learning tool to predict two year survival following elective AAA repair.

METHODS

All patients who underwent elective open or endovascular repair of AAA from 1 January 2008 to 31 March 2021 were reviewed. They were assessed using the Vascular Services Quality Improvement Program pathway involving cardiopulmonary exercise testing, contrast enhanced computerised tomography scan, and multidisciplinary assessment. Patients were followed up for at least two years. A RFC was developed using 70% of the dataset and validated using 30% to predict survival for at least two years following AAA repair.

RESULTS

Nine hundred and twenty five patients (n = 836 men; n = 89 women) underwent elective AAA repair; 126 (13.6%) died during the first two years; 11 (1.2%) died peri-procedurally. Variable importance analysis suggested that anaerobic threshold, pre-operative haemoglobin, maximal O consumption, body mass index, risk category, and forced expiratory volume in 1 second - forced vital capacity ratio were the most important contributors to the model. Sensitivity and specificity of the RFC for prediction of two year survival following surgery was 96.7% (95% CI 94.4 - 99%) and 67.1% (95% CI 61 - 72%); overall accuracy: 92.6% (95% CI 88 - 95%) (positive predictive value: 0.93, negative predictive value: 0.80); 10 fold cross validation revealed area under the receiver operator characteristic curve of 0.88.

CONCLUSION

RFCs based on readily available clinical data can successfully predict survival in the first two years following elective AAA repair. Such information can contribute to the risk benefit assessment when deciding to electively repair AAAs.

摘要

目的

决定选择性修复腹主动脉瘤(AAA)需要平衡破裂风险、围手术期死亡风险和预期寿命。随机森林分类器(RFC)是强大的机器学习算法。本研究的目的是构建并验证一种随机森林机器学习工具,以预测选择性AAA修复术后两年的生存率。

方法

回顾了2008年1月1日至2021年3月31日期间接受选择性开放或血管腔内修复AAA的所有患者。使用血管服务质量改进计划路径对他们进行评估,该路径包括心肺运动测试、对比增强计算机断层扫描和多学科评估。对患者进行了至少两年的随访。使用70%的数据集开发了一个RFC,并使用30%的数据集进行验证,以预测AAA修复术后至少两年的生存率。

结果

925例患者(n = 836例男性;n = 89例女性)接受了选择性AAA修复;126例(13.6%)在头两年内死亡;11例(1.2%)在围手术期死亡。变量重要性分析表明,无氧阈值、术前血红蛋白、最大耗氧量、体重指数、风险类别以及一秒用力呼气量与用力肺活量比值是该模型最重要的影响因素。RFC预测术后两年生存率的敏感性和特异性分别为96.7%(95%CI 94.4 - 99%)和67.1%(95%CI 61 - 72%);总体准确率:92.6%(95%CI 88 - 95%)(阳性预测值:0.93,阴性预测值:0.80);10倍交叉验证显示受试者操作特征曲线下面积为0.88。

结论

基于现成临床数据的RFC能够成功预测选择性AAA修复术后头两年的生存率。此类信息有助于在决定选择性修复AAA时进行风险效益评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验