Nishibe Toshiya, Iwasa Tsuyoshi, Matsuda Seiji, Kano Masaki, Akiyama Shinobu, Fukuda Shoji, Nishibe Masayasu
Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu, Hokkaido, Japan.
Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan.
Ann Thorac Cardiovasc Surg. 2025;31(1). doi: 10.5761/atcs.oa.25-00036.
Endovascular aneurysm repair (EVAR) is widely used to treat abdominal aortic aneurysms (AAAs), but mid-term survival remains a concern. This study aims to develop a machine learning-based random forest model to predict 3-year survival after EVAR.
A random forest model was trained using data from 176 EVAR patients, of whom 169 patients were retained for analysis, incorporating 23 preoperative and perioperative variables. Model performance was evaluated using 5-fold cross-validation.
The model achieved an area under the receiver-operating characteristic curve (AUC) of 0.91, with an accuracy of 81.1%, a sensitivity of 81.6%, a specificity of 80.9%, and an F1 score of 0.66. Feature importance analysis identified poor nutritional status (geriatric nutritional risk index <101.4), compromised immunity (neutrophil-to-lymphocyte ratio >3.19), chronic kidney disease (CKD), octogenarian status, chronic obstructive pulmonary disease (COPD), small aneurysm size, and statin use as the top predictors of 3-year mortality. The average values of the AUC, accuracy, sensitivity, specificity, and F1 score across the 5-folds were 0.76 ± 0.10, 73.9 ± 5.8%, 60.4 ± 1.9%, 77.8 ± 0.7%, and 0.59 ± 0.17, indicating consistent performance across different data subsets.
The random forest model effectively predicts 3-year survival after EVAR, indicating key factors such as poor nutritional status, compromised immunity, CKD, octogenarian status, COPD, small aneurysm size, and statin use.
血管内动脉瘤修复术(EVAR)被广泛用于治疗腹主动脉瘤(AAA),但中期生存率仍是一个令人担忧的问题。本研究旨在开发一种基于机器学习的随机森林模型,以预测EVAR术后3年生存率。
使用176例接受EVAR治疗患者的数据训练随机森林模型,其中169例患者被保留用于分析,纳入了23个术前和围手术期变量。使用5折交叉验证评估模型性能。
该模型的受试者操作特征曲线(AUC)下面积为0.91,准确率为81.1%,灵敏度为81.6%,特异性为80.9%,F1评分为0.66。特征重要性分析确定,营养状况差(老年营养风险指数<101.4)、免疫功能受损(中性粒细胞与淋巴细胞比值>3.19)、慢性肾脏病(CKD)、高龄、慢性阻塞性肺疾病(COPD)、小动脉瘤大小和使用他汀类药物是3年死亡率的主要预测因素。5次交叉验证的AUC、准确率、灵敏度、特异性和F1评分的平均值分别为0.76±0.10、73.9±5.8%、60.4±!9%、77.8±0.7%和0.59±0.17,表明在不同数据子集上具有一致的性能。
随机森林模型可有效预测EVAR术后3年生存率,明确了营养状况差、免疫功能受损、CKD、高龄、COPD、小动脉瘤大小和使用他汀类药物等关键因素。