Eadsforth Thomas C, Torrie Leah S, Rowland Paul, Edgar Emma V, MacLean Lorna M, Paterson Christy, Robinson David A, Shepherd Sharon M, Thomas John, Thomas Michael G, Gray David W, Postis Vincent L G, De Rycker Manu
Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
GSK, Medicines Research Centre, Stevenage, UK.
J Biol Chem. 2025 Jan;301(1):108049. doi: 10.1016/j.jbc.2024.108049. Epub 2024 Dec 9.
The proteasome is considered an excellent drug target for many infectious diseases as well as cancer. Challenges with robust and safe supply of proteasomes from infectious agents, lack of structural information, and complex pharmacology due to multiple active sites have hampered progress in the infectious disease space. We recombinantly expressed the proteasome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, and demonstrate pharmacological equivalence to the native T. cruzi proteasome. Active-site mutant recombinant proteasomes reveal substrate promiscuity for WT proteasomes, with important implications for assessing pharmacological responses of active-site selective inhibitors. Using these mutant proteasomes, we show that some selective parasite proteasome inhibitors only partially inhibit the chymotrypsin-like activity, including a newly developed 5-(phenoxymethyl)furan-2-carboxamide-based proteasome inhibitor. In spite of partial inhibition, these compounds remain potent inhibitors of intracellular T. cruzi growth. Drug-resistant mutants provide further insights in drug mode-of-inhibition. We also present the high-resolution CryoEM structures of both native and recombinantly-expressed T. cruzi proteasomes which reveal pharmacologically relevant differences in the ligand-binding site compared to the related Leishmania proteasome. Furthermore, we show that the trypanosomatid β4/β5 selectivity pocket is not present in the proteasome structures of other protozoan parasites. This work highlights the need, and provides approaches, to precisely assess proteasome substrate selectivity and pharmacology. It enables structure-guided drug discovery for this promising Chagas disease drug target, provides a new chemical starting point for drug discovery, and paves the road for development of robust proteasome drug discovery programmes for other eukaryotic infectious diseases.
蛋白酶体被认为是许多传染病以及癌症的理想药物靶点。由于难以从感染因子中稳定且安全地获取蛋白酶体、缺乏结构信息以及多个活性位点导致的复杂药理学特性,传染病领域的研究进展受到了阻碍。我们通过重组表达原生动物寄生虫克氏锥虫(恰加斯病的病原体)的蛋白酶体,证明其与天然克氏锥虫蛋白酶体具有药理学等效性。活性位点突变的重组蛋白酶体揭示了野生型蛋白酶体的底物混杂性,这对于评估活性位点选择性抑制剂的药理学反应具有重要意义。利用这些突变蛋白酶体,我们发现一些选择性寄生虫蛋白酶体抑制剂仅部分抑制胰凝乳蛋白酶样活性,包括一种新开发的基于5-(苯氧基甲基)呋喃-2-甲酰胺的蛋白酶体抑制剂。尽管存在部分抑制作用,但这些化合物仍是细胞内克氏锥虫生长的有效抑制剂。耐药突变体为药物抑制模式提供了进一步的见解。我们还展示了天然和重组表达的克氏锥虫蛋白酶体的高分辨率冷冻电镜结构,这些结构揭示了与相关利什曼原虫蛋白酶体相比,配体结合位点在药理学上的相关差异。此外,我们表明锥虫β4/β5选择性口袋在其他原生动物寄生虫的蛋白酶体结构中不存在。这项工作强调了精确评估蛋白酶体底物选择性和药理学的必要性,并提供了相应方法。它为针对这个有前景的恰加斯病药物靶点进行结构导向的药物发现提供了可能,为药物发现提供了新的化学起点,并为开发针对其他真核传染病的强大蛋白酶体药物发现计划铺平了道路。