Suppr超能文献

评估用于MRI中Modic改变自动检测与分级的卷积神经网络架构:一项比较研究

Evaluating CNN Architectures for the Automated Detection and Grading of Modic Changes in MRI: A Comparative Study.

作者信息

Xing Li-Peng, Liu Gang, Zhang Hao-Chen, Wang Lei, Zhu Shan, Bao Man Du La Hua, Wang Yan-Ni, Chen Chao, Wang Zhi, Liu Xin-Yu, Zhang Shuai, Yang Qiang

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, China.

Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.

出版信息

Orthop Surg. 2025 Jan;17(1):233-243. doi: 10.1111/os.14280. Epub 2024 Dec 5.

Abstract

OBJECTIVE

Modic changes (MCs) classification system is the most widely used method in magnetic resonance imaging (MRI) for characterizing subchondral vertebral marrow changes. However, it shows a high degree of sensitivity to variations in MRI because of its semiquantitative nature. In 2021, the authors of this classification system further proposed a quantitative and reliable MC grading method. However, automated tools to grade MCs are lacking. This study developed and investigated the performance of convolutional neural network (CNN) in detecting and grading MCs based on their maximum vertical extent. In order to verify performance, we tested CNNs' generalization performance, the performance of CNN with that of junior doctors, and the consistency of junior doctors after AI assistance.

METHODS

A retrospective analysis of 139 patients' MRIs with MCs was conducted and annotated by a spine surgeon. Of the 139 patients, MRIs from 109 patients were acquired using Philips scanners from June 2020 to June 2021, constituting Dataset 1. The remaining 30 patients had MRIs obtained from both Philips and United Imaging scanners from June 2022 to March 2023, forming Dataset 2. YOLOv8 and YOLOv5 were developed in PyCharm using the Python language and based on the PyTorch deep learning framework, data enhancement and transfer learning were applied to enhance model generalization. The model's performance was compared with precision, recall, F1 score, and mAP50. It also tested generalizability and compared it with the junior doctor's performance on the second data set (Dataset 2). Post hoc, the junior doctor graded Dataset 2 with CNN assistance. In addition, the region of interest was displayed using the class activation mapping heat map.

RESULTS

On the unseen test set, the YOLOv8 and YOLOv5 models achieved precision of 81.60% and 61.59%, recall of 80.90% and 67.16%, mAP50 of 84.40% and 68.88%, and F1 of 0.81 and 0.60 respectively. On Dataset 2, YOLOv8 and junior doctor achieved precision of 95.1% and 72.5%, recall of 68.3% and 60.6%. In the AI-assisted experiment, agreement between the junior doctor and the senior spine surgeon significantly improved from Cohen's kappa of 0.368-0.681.

CONCLUSIONS

YOLOv8 in detecting and grading MCs was significantly superior to that of YOLOv5. The performance of YOLOv8 is superior to that of junior doctors, and it can enhance the capabilities of junior doctors and improve the reliability of diagnoses.

摘要

目的

Modic改变(MCs)分类系统是磁共振成像(MRI)中用于描述椎体软骨下骨髓改变最广泛使用的方法。然而,由于其半定量性质,它对MRI变化表现出高度敏感性。2021年,该分类系统的作者进一步提出了一种定量且可靠的MC分级方法。然而,缺乏对MCs进行分级的自动化工具。本研究开发并研究了基于最大垂直范围检测和分级MCs的卷积神经网络(CNN)的性能。为了验证性能,我们测试了CNN的泛化性能、CNN与初级医生的性能比较以及人工智能辅助后初级医生的一致性。

方法

对139例有MCs的患者的MRI进行回顾性分析,并由脊柱外科医生进行标注。在这139例患者中,109例患者的MRI是在2020年6月至2021年6月期间使用飞利浦扫描仪获取的,构成数据集1。其余30例患者的MRI是在2022年6月至2023年3月期间从飞利浦和联影扫描仪获取的,形成数据集2。使用Python语言在PyCharm中基于PyTorch深度学习框架开发了YOLOv8和YOLOv5,应用数据增强和迁移学习来提高模型泛化能力。将模型的性能与精确率、召回率、F1分数和mAP50进行比较。还测试了泛化能力,并将其与初级医生在第二个数据集(数据集2)上的表现进行比较。事后,初级医生在CNN辅助下对数据集2进行分级。此外,使用类激活映射热图显示感兴趣区域。

结果

在未见过的测试集上,YOLOv8和YOLOv5模型的精确率分别为81.60%和61.59%,召回率分别为80.90%和67.16%,mAP50分别为84.40%和68.88%,F1分别为0.81和(0.60)。在数据集2上,YOLOv8和初级医生的精确率分别为95.1%和72.5%,召回率分别为68.3%和60.6%。在人工智能辅助实验中,初级医生与资深脊柱外科医生之间的一致性从科恩kappa系数的0.368提高到了0.681。

结论

YOLOv8在检测和分级MCs方面明显优于YOLOv5。YOLOv8的性能优于初级医生,它可以增强初级医生的能力并提高诊断的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5103/11735353/bd577bebbbf1/OS-17-233-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验