Suppr超能文献

基于深度学习的 MRI 图像 Modic 改变自动检测与分类:智能辅助诊断系统。

Automatic Detection and Classification of Modic Changes in MRI Images Using Deep Learning: Intelligent Assisted Diagnosis System.

机构信息

Clinical School/College of Orthopaedics, Tianjin Medical University, Tianjin, China.

Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.

出版信息

Orthop Surg. 2024 Jan;16(1):196-206. doi: 10.1111/os.13894. Epub 2023 Nov 7.

Abstract

OBJECTIVE

Modic changes (MCs) are the most prevalent classification system for describing intravertebral MRI signal intensity changes. However, interpreting these intricate MRI images is a complex and time-consuming process. This study investigates the performance of single shot multibox detector (SSD) and ResNet18 network-based automatic detection and classification of MCs. Additionally, it compares the inter-observer agreement and observer-classifier agreement in MCs diagnosis to validate the feasibility of deep learning network-assisted detection of classified MCs.

METHOD

A retrospective analysis of 140 patients with MCs who underwent MRI diagnosis and met the inclusion and exclusion criteria in Tianjin Hospital from June 2020 to June 2021 was used as the internal dataset. This group consisted of 55 males and 85 females, aged 25 to 89 years, with a mean age of (59.0 ± 13.7) years. An external test dataset of 28 patients, who met the same criteria and were assessed using different MRI equipment at Tianjin Hospital, was also gathered, including 11 males and 17 females, aged 31 to 84 years, with a mean age of 62.7 ± 10.9 years. After Physician 1 (with 15 years of experience) annotated all MRI images, the internal dataset was imported into the deep learning model for training. The model comprises an SSD network for lesion localization and a ResNet18 network for lesion classification. Performance metrics, including accuracy, recall, precision, F1 score, confusion matrix, and inter-observer agreement parameter Kappa value, were used to evaluate the model's performance on the internal and external datasets. Physician 2 (with 1 year of experience) re-labeled the internal and external test datasets to compare the inter-observer agreement and observer-classifier agreement.

RESULTS

In the internal dataset, when models were utilized for the detection and classification of MCs, the accuracy, recall, precision and F1 score reached 86.25%, 87.77%, 84.92% and 85.60%, respectively. The Kappa value of the inter-observer agreement was 0.768 (95% CI: 0.656, 0.847),while observer-classifier agreement was 0.717 (95% CI: 0.589, 0.809).In the external test dataset, the model's the accuracy, recall, precision and F1 scores for diagnosing MCs reached 75%, 77.08%, 77.80% and 74.97%, respectively. The inter-observer agreement was 0.681 (95% CI: 0.512, 0.677), and observer-classifier agreement was 0.519 (95% CI: 0.290, 0.690).

CONCLUSION

The model demonstrated strong performance in detecting and classifying MCs, achieving high agreement with physicians in MCs diagnosis. These results suggest that deep learning models have the potential to facilitate the application of intelligent assisted diagnosis techniques in the field of spine research.

摘要

目的

Modic 改变(MCs)是描述脊柱 MRI 信号强度变化最常用的分类系统。然而,解释这些复杂的 MRI 图像是一个复杂且耗时的过程。本研究探讨了基于单镜头多盒探测器(SSD)和 ResNet18 网络的 MCs 自动检测和分类的性能。此外,还比较了 MCs 诊断中观察者间和观察者-分类器间的一致性,以验证深度学习网络辅助分类 MCs 检测的可行性。

方法

回顾性分析了 2020 年 6 月至 2021 年 6 月在天津医院接受 MRI 诊断且符合纳入和排除标准的 140 例 MCs 患者作为内部数据集。该组包括 55 名男性和 85 名女性,年龄 25 至 89 岁,平均年龄(59.0±13.7)岁。还收集了在天津医院使用不同 MRI 设备评估的 28 例符合相同标准的外部测试数据集,包括 11 名男性和 17 名女性,年龄 31 至 84 岁,平均年龄 62.7±10.9 岁。在医师 1(具有 15 年经验)对所有 MRI 图像进行注释后,将内部数据集导入深度学习模型进行训练。该模型包括用于病变定位的 SSD 网络和用于病变分类的 ResNet18 网络。使用准确性、召回率、精度、F1 评分、混淆矩阵和观察者间一致性参数 Kappa 值来评估模型在内部和外部数据集上的性能。医师 2(具有 1 年经验)重新标记内部和外部测试数据集,以比较观察者间和观察者-分类器间的一致性。

结果

在内部数据集中,当模型用于 MCs 的检测和分类时,准确性、召回率、精度和 F1 评分分别达到 86.25%、87.77%、84.92%和 85.60%。观察者间一致性的 Kappa 值为 0.768(95%CI:0.656,0.847),而观察者-分类器一致性为 0.717(95%CI:0.589,0.809)。在外部测试数据集中,模型用于诊断 MCs 的准确性、召回率、精度和 F1 评分分别达到 75%、77.08%、77.80%和 74.97%。观察者间一致性为 0.681(95%CI:0.512,0.677),观察者-分类器一致性为 0.519(95%CI:0.290,0.690)。

结论

该模型在检测和分类 MCs 方面表现出强大的性能,与 MCs 诊断中的医生具有高度一致性。这些结果表明,深度学习模型有可能促进智能辅助诊断技术在脊柱研究领域的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdb8/10782244/95a9067e8b57/OS-16-196-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验