Suppr超能文献

评估用于对数据有限且标签有噪声的光学相干断层扫描(OCT)图像进行分类的深度学习模型。

Evaluating deep learning models for classifying OCT images with limited data and noisy labels.

作者信息

Miladinović Aleksandar, Biscontin Alessandro, Ajčević Miloš, Kresevic Simone, Accardo Agostino, Marangoni Dario, Tognetto Daniele, Inferrera Leandro

机构信息

Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Via dell'Istria 1, Trieste, 34100, Italy.

Department of Engineering and Architecture, University of Trieste, Trieste, Italy.

出版信息

Sci Rep. 2024 Dec 5;14(1):30321. doi: 10.1038/s41598-024-81127-1.

Abstract

The use of deep learning for OCT image classification could enhance the diagnosis and monitoring of retinal diseases. However, challenges like variability in retinal abnormalities, noise, and artifacts in OCT images limit its clinical use. Our study aimed to evaluate the performance of various deep learning (DL) architectures in classifying retinal pathologies versus healthy cases based on OCT images, under data scarcity and label noise. We examined five DL architectures: ResNet18, ResNet34, ResNet50, VGG16, and InceptionV3. Fine-tuning of the pre-trained models was conducted on 5526 OCT images and reduced subsets down to 21 images to evaluate performance under data scarcity. The performance of models fine-tuned on subsets with label noise levels of 10%, 15%, and 20% was evaluated. All DL architectures achieved high classification accuracy (> 90%) with training sets of 345 or more images. InceptionV3 achieved the highest classification accuracy (99%) when trained on the entire training set. However, classification accuracy decreased and variability increased as sample size decreased. Label noise significantly affected model accuracy. Compensating for labeling errors of 10%, 15%, and 20% requires approximately 4, 9, and 14 times more images in the training set to reach the performance of 345 correctly labeled images. The results showed that DL models fine-tuned on sets of 345 or more OCT images can accurately classify retinal pathologies versus healthy controls. Our findings highlight that while mislabeling errors significantly impact classification performance in OCT analysis, this can be effectively mitigated by increasing the training sample size. By addressing data scarcity and labeling errors, our research aims to improve the real-world application and accuracy of retinal disease management.

摘要

将深度学习用于光学相干断层扫描(OCT)图像分类可增强对视网膜疾病的诊断和监测。然而,诸如视网膜异常的变异性、OCT图像中的噪声和伪影等挑战限制了其临床应用。我们的研究旨在评估在数据稀缺和标签噪声情况下,各种深度学习(DL)架构基于OCT图像对视网膜病变与健康病例进行分类的性能。我们研究了五种DL架构:ResNet18、ResNet34、ResNet50、VGG16和InceptionV3。在5526张OCT图像上对预训练模型进行微调,并将子集减少至21张图像,以评估数据稀缺情况下的性能。评估了在标签噪声水平为10%、15%和20%的子集上微调后的模型性能。所有DL架构在345张或更多图像的训练集上均实现了较高的分类准确率(>90%)。InceptionV3在整个训练集上训练时达到了最高分类准确率(99%)。然而,随着样本量的减少,分类准确率下降且变异性增加。标签噪声显著影响模型准确率。要补偿10%、15%和20%的标签错误,训练集中需要的图像数量大约分别是345张正确标注图像的4倍、9倍和14倍。结果表明,在345张或更多OCT图像集上微调后的DL模型能够准确地将视网膜病变与健康对照进行分类。我们的研究结果强调,虽然错误标注会显著影响OCT分析中的分类性能,但通过增加训练样本量可以有效缓解这一问题。通过解决数据稀缺和标签错误问题,我们的研究旨在提高视网膜疾病管理在现实世界中的应用和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9986/11621707/c7682fb7c3e4/41598_2024_81127_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验