Suppr超能文献

利用物联网和机器学习增强先进电池管理系统以预测锂离子电池的剩余使用寿命

Advanced battery management system enhancement using IoT and ML for predicting remaining useful life in Li-ion batteries.

作者信息

Krishna Gopal, Singh Rajesh, Gehlot Anita, Almogren Ahmad, Altameem Ayman, Ur Rehman Ateeq, Hussen Seada

机构信息

Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India.

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11633, Saudi Arabia.

出版信息

Sci Rep. 2024 Dec 5;14(1):30394. doi: 10.1038/s41598-024-80719-1.

Abstract

This study highlights the increasing demand for battery-operated applications, particularly electric vehicles (EVs), necessitating the development of more efficient Battery Management Systems (BMS), particularly lithium-ion (Li-ion) batteries used in energy storage systems (ESS). This research addresses some of the key limitations of current BMS technologies, with a focus on accurately predicting the remaining useful life (RUL) of batteries, which is a critical factor for ensuring operational efficiency and sustainability. Real-time data are collected from sensors via an Internet of Things (IoT) device and processed using Arduino Nano, which extracts values for input into a Long Short-Term Memory (LSTM) model. This model employs the National Aeronautics and Space Administration (NASA) Li-battery dataset and current, voltage temperature, and cycle values to predict the battery RUL. The proposed model demonstrates significant forecasting precision, attaining a root mean square error (RMSE) of 0.01173, outperforming all comparative models. This improvement facilitates more effective decision-making in BMS, particularly in resource allocation and adaptability to transient conditions. However, the practical implementation of real-time data acquisition systems at a scale and across diverse environments remains challenging. Future research will focus on enhancing the generalizability of the model, expanding its applicability to broader datasets, and automating data ingestion to minimize integration challenges. These advancements are aimed at improving energy efficiency in both industrial and residential applications in accordance with the Sustainable Development Goals (SDGs) of the UN.

摘要

本研究强调了对电池供电应用,尤其是电动汽车(EV)的需求不断增加,这就需要开发更高效的电池管理系统(BMS),特别是用于储能系统(ESS)的锂离子(Li-ion)电池。本研究解决了当前BMS技术的一些关键局限性,重点是准确预测电池的剩余使用寿命(RUL),这是确保运行效率和可持续性的关键因素。通过物联网(IoT)设备从传感器收集实时数据,并使用Arduino Nano进行处理,Arduino Nano提取值以输入到长短期记忆(LSTM)模型中。该模型利用美国国家航空航天局(NASA)的锂电池数据集以及电流、电压、温度和循环值来预测电池的RUL。所提出的模型显示出显著的预测精度,均方根误差(RMSE)达到0.01173,优于所有比较模型。这一改进有助于在BMS中做出更有效的决策,特别是在资源分配和对瞬态条件的适应性方面。然而,在大规模和不同环境中实际实施实时数据采集系统仍然具有挑战性。未来的研究将集中在提高模型的通用性,将其适用性扩展到更广泛的数据集,并自动化数据摄取以最小化集成挑战。这些进展旨在根据联合国的可持续发展目标(SDG)提高工业和住宅应用中的能源效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0b4/11621522/9962e268cb92/41598_2024_80719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验