Suppr超能文献

基于多日肌电图的膝关节扭矩估计:使用混合神经肌肉骨骼模型和卷积神经网络

Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks.

作者信息

Schulte Robert V, Zondag Marijke, Buurke Jaap H, Prinsen Erik C

机构信息

Roessingh Research and Development, Enschede, Netherlands.

Department of Biomedical Signals and Systems, University of Twente, Enschede, Netherlands.

出版信息

Front Robot AI. 2022 Apr 25;9:869476. doi: 10.3389/frobt.2022.869476. eCollection 2022.

Abstract

Proportional control using surface electromyography (EMG) enables more intuitive control of a transfemoral prosthesis. However, EMG is a noisy signal which can vary over time, giving rise to the question what approach for knee torque estimation is most suitable for multi-day control. In this study we compared three different modelling frameworks to estimate knee torque in non-weight-bearing situations. The first model contained a convolutional neural network (CNN) which mapped EMG to knee torque directly. The second used a neuromusculoskeletal model (NMS) which used EMG, muscle tendon unit lengths and moment arms to compute knee torque. The third model (Hybrid) used a CNN to map EMG to specific muscle activation, which was used together with NMS components to compute knee torque. Multi-day measurements were conducted on ten able-bodied participants who performed non-weight bearing activities. CNN had the best performance in general and on each day (Normalized Root Mean Squared Error (NRMSE) 9.2 ± 4.4%). The Hybrid model (NRMSE 12.4 ± 3.4%) was able to outperform NMS (NRMSE 14.3 ± 4.2%). The NMS model showed no significant difference between measurement days. The CNN model and Hybrid models had significant performance differences between the first day and all other days. CNNs are suited for multi-day torque estimation in terms of error rate, outperforming the other two model types. NMS was the only model type which was robust over all days. This study investigated the behavior of three model types over multiple days, giving insight in the most suited modelling approach for multi-day torque estimation to be used in prosthetic control.

摘要

使用表面肌电图(EMG)的比例控制能够更直观地控制经股骨假肢。然而,EMG是一种噪声信号,会随时间变化,这就引发了一个问题:哪种膝关节扭矩估计方法最适合多日控制。在本研究中,我们比较了三种不同的建模框架,以估计非负重情况下的膝关节扭矩。第一个模型包含一个卷积神经网络(CNN),它直接将EMG映射到膝关节扭矩。第二个模型使用神经肌肉骨骼模型(NMS),该模型利用EMG、肌肉肌腱单元长度和力臂来计算膝关节扭矩。第三个模型(混合模型)使用CNN将EMG映射到特定的肌肉激活,然后与NMS组件一起用于计算膝关节扭矩。对十名进行非负重活动的健全参与者进行了多日测量。总体而言,CNN在每日测量中表现最佳(归一化均方根误差(NRMSE)为9.2±4.4%)。混合模型(NRMSE为12.4±3.4%)的表现优于NMS模型(NRMSE为14.3±4.2%)。NMS模型在各测量日之间没有显著差异。CNN模型和混合模型在第一天和所有其他天之间存在显著的性能差异。就错误率而言,CNN适用于多日扭矩估计,其性能优于其他两种模型类型。NMS是唯一一种在所有日子里都表现稳健的模型类型。本研究调查了三种模型类型在多日期间的表现,为假肢控制中多日扭矩估计的最适合建模方法提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b31/9081836/2419ac79b796/frobt-09-869476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验