Suppr超能文献

机器学习方法在耐力训练运动员生理探索中的作用:一篇综述。

The role of machine learning methods in physiological explorations of endurance trained athletes: a mini-review.

作者信息

Boudry Félix, Durand Fabienne, Meric Henri, Mouakher Amira

机构信息

Espace Dev, Université de Perpignan Via Domitia, Perpignan, France.

UMR Espace Dev (228), Université Montpellier, IRD, Montpellier, France.

出版信息

Front Sports Act Living. 2024 Nov 21;6:1440652. doi: 10.3389/fspor.2024.1440652. eCollection 2024.

Abstract

Endurance-trained athletes require physiological explorations that have evolved throughout the history of exercise physiology with technological advances. From the use of the Douglas bag to measure gas exchange to the development of wearable connected devices, advances in physiological explorations have enabled us to move from the classic but still widely used cardiopulmonary exercise test (CPET) to the collection of data under real conditions on outdoor endurance or ultra-endurance events. However, such explorations are often costly, time-consuming, and complex, creating a need for efficient analysis methods. Machine Learning (ML) has emerged as a powerful tool in exercise physiology, offering solutions to these challenges. Given that exercise physiologists may be unfamiliar with ML, this mini-review provides a concise overview of its relevance to the field. It introduces key ML methods, highlights their ability to predict important physiological parameters (e.g., heart rate variability and exercise-induced hypoxemia), and discusses their strengths and limitations. Finally, it outlines future directions based on the challenges identified, serving as an initial reference for physiologists exploring the application of ML in endurance exercise.

摘要

耐力训练的运动员需要随着运动生理学历史发展以及技术进步而不断演变的生理探索。从使用道格拉斯袋测量气体交换到可穿戴连接设备的发展,生理探索的进步使我们能够从经典但仍广泛使用的心肺运动测试(CPET)转向在户外耐力或超长耐力赛事的实际条件下收集数据。然而,此类探索往往成本高昂、耗时且复杂,因此需要高效的分析方法。机器学习(ML)已成为运动生理学中的强大工具,为这些挑战提供了解决方案。鉴于运动生理学家可能不熟悉ML,本综述简要概述了其与该领域的相关性。它介绍了关键的ML方法,强调了它们预测重要生理参数(如心率变异性和运动性低氧血症)的能力,并讨论了其优势和局限性。最后,它根据所确定的挑战概述了未来方向,为探索ML在耐力运动中应用的生理学家提供初步参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2149/11617143/e8578200bec3/fspor-06-1440652-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验